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Abstract

The problem of hydromagnetic fully developed laminar mixed convection flow in a vertical channel with symmetric

and asymmetric wall heating conditions in the presence or absence of heat generation or absorption effects is consid-

ered. Through proper choice of dimensionless variables, the governing equations are developed and three types of

thermal boundary conditions are prescribed. These thermal boundary conditions are isothermal–isothermal, isoflux–

isothermal, and isothermal–isoflux for the left–right walls of the channel. Analytical solutions for the velocity and

temperature profiles for various special cases of the problem are reported. In addition, closed-form expressions for the

Nusselt numbers and reversal flow conditions at both the left and right channel walls are derived. The general problem

which includes the effects of both viscous dissipation and Joule heating is solved numerically by an implicit finite-

difference scheme. Favorable comparisons of special cases with previously published work are obtained. A selected set

of graphical results illustrating the effects of the various parameters involved in the problem including viscous and

magnetic dissipations on the velocity and temperature profiles as well as flow reversal situations and Nusselt numbers is

presented and discussed. � 2002 Published by Elsevier Science Ltd.

1. Introduction

Mixed convection flow in a vertical channel has

been the subject of many previous investigations due

its possible application in many industrial and engi-

neering processes. These include cooling of electronic

equipment, heating of the Trombe wall system, gas-

cooled nuclear reactors and others. Tao [17] analyzed

laminar fully developed mixed convection flow in a

vertical parallel-plate channel with uniform wall tem-

peratures. Aung and Worku [1,2] discussed the theory

of combined free and forced convection in a vertical

channel with flow reversal conditions for both devel-

oping and fully developed flows. Aung and Worku [2]

assumed that the walls of the channel were having

asymmetric temperatures. The case of developing

mixed convection flow in ducts with asymmetric wall

heat fluxes was analyzed by the same authors [3]. A

comprehensive review of the literature dealing with

mixed convection in internal flow was reported by

Aung [4]. Cheng et al. [9], Hamadah and Wirtz [11]

and Ingham et al. [12] also reported on flow reversal

situations in mixed convection in a vertical channel for

different wall heating conditions. Kou and Lu [13]

analyzed mixed convection in a porous medium

channel and discussed the conditions for flow reversal

situations.

The use of electrically conducting fluids under the

influence of magnetic fields in various industries has

led to a renewed interest in investigating hydromag-

netic flow and heat transfer in different geoemetries.

For example, Sparrow and Cess [15] considered the

effect of a magnetic field on the free convection heat

transfer from a surface. Raptis and Kafoussias [14]
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analyzed flow and heat transfer through a porous

medium bounded by an infinite vertical plate under

the action of a magnetic field. Garandet et al. [10]

discussed buoyancy driven convection in a rectangular

enclosure with a transverse magnetic field. Chamkha

[7] analyzed free convection effects on three-dimen-

sional flow over a vertical stretching surface in the

presence of a magnetic field.

The study of internal heat generation or absorption

in moving fluids is important in view of several phys-

ical problems such as those dealing with chemical re-

actions and those concerned with dissociating fluids

(see, for instance, [18,19]). Other investigations dealing

with internal heat generation or absorption can be

found in the works of Sparrow and Cess [16] and

Chamkha [7].

The aim of the present work is to extend studies

available in the literature and especially the work of

Barletta [5] on laminar fully developed mixed con-

vection in a vertical parallel-plate channel by including

internal heat generation or absorption and magnetic

field effects. This will be done for three types of left–

right walls thermal conditions. These conditions are

the isothermal–isothermal, isoflux–isothermal and the

isothermal–isoflux thermal wall conditions.

2. Governing equations

Consider steady laminar mixed convective flow in a

parallel-plate vertical channel in the presence of a

magnetic field and a heat source or sink. The vertical

plates are separated by a distance L and are maintained

at either constant temperature or constant heat flux (see

Fig. 1). Let x and y represent the vertical and horizontal

distances, respectively, with the origin being at the center

of the channel. Let the magnetic field be applied in the

horizontal direction normal to the flow direction. The

working fluid is assumed to be Newtonian, electrically

conducting, and heat generating or absorbing and its

properties are assumed constant except the density in the

body force term of the momentum equation. Also, it is

assumed that x-component of velocity is the only non-

zero component. Under the above assumptions and by

invoking the Boussinesq approximation, the governing

equations can be written as:

Nomenclature

A constant pressure gradient (Pa m�1)

B0 magnetic induction (tesla)

Br Brinkman number defined in Eq. (7)

c specific heat at constant pressure

(J kg�1 K�1)

D ¼ 2L, hydraulic diameter (m)

Gr Grashof number defined in Eq. (7)

h1; h2 heat transfer coefficients at left and right

walls, respectively (W m�2 K�1)

g acceleration due to gravity (m s�2)

k thermal conductivity (W m�1 K�1)

L channel width (m)

M Hartmann number defined in Eq. (7)

Nu1;Nu2 Nusselt numbers defined by Eqs. (69),

(73) or (78)

p pressure (Pa)

P ¼ p þ qgx, difference between the

pressure and the hydrostatic pressure (Pa)

Pr Prandtl number defined in Eq. (7)

q1; q2 prescribed boundary heat fluxes per unit

area (W m�2)

Q0 heat generation, or absorption, coefficient

(W m�3 K�1)

Re Reynolds number defined in Eq. (7)

Rt ¼ ðT2 � T1Þ=DT , temperature difference

ratio

Rqt ¼ ðT2 � T0Þ=DT , thermal ratio parameter

Rtq ¼ ðT1 � T0Þ=DT , thermal ratio parameter

T temperature (K)

T1; T2 prescribed boundary temperatures (K)

T0 reference ambient temperature, ¼ ðT1þ
T2Þ=2, (K) for isothermal walls

u dimensional velocity component in the

x-direction (m s�1)

u0 ¼ AD2=ð48lÞ, reference velocity (m s�1)

U dimensionless velocity component in the

x-direction

x streamwise coordinate (m)

y transverse coordinate (m)

Greek symbols

a ¼ k=ðqcÞ, thermal diffusivity (m2 s�1)

b thermal expansion coefficient (K�1)

DT reference temperature difference (K)

g dimensionless transverse coordinate

defined in Eq. (7)

/ dimensionless heat generation or

absorption coefficient defined in Eq. (7)

h dimensionless temperature defined by

Eq. (7)

l dynamic viscosity (Pa s)

m ¼ l=q, kinematic viscosity (m2 s�1)

q fluid density (kg m3)

r fluid electrical conductivity (mho m�1)
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where u and T are the x-component of velocity and

temperature, respectively, P ¼ p þ qgx is the difference

between the pressure and hydrostatic pressure. q, l, m, k
and c are the fluid density, dynamic viscosity, kinematic

viscosity, thermal conductivity and specific heat at

constant pressure, respectively. b, g, r, B0, and Q0 are

the thermal expansion coefficient, gravitational acceler-

ation, fluid electrical conductivity, magnetic induction,

and the heat generation or absorption coefficient, re-

spectively. T0 is a reference ambient temperature. In the

proceeding sections, it will be necessary to distinguish

between heat generation cases and heat absorption cases

because a general solution in which Q0 can be either

positive or negative experiences difficulties upon nu-

merical evaluation such as the evaluation of complex

numbers, etc. For this reason, the positive or negative

signs in front of the last term of Eq. (3) are used such

that the positive sign indicates heat generation and the

negative sign indicates heat absorption. In this way,

Q0 > 0 for both situations.

Eq. (1) suggests that u will only be a function of the

horizontal distance y. Also for the three different wall

heating conditions of isothermal–isothermal, isoflux–

isothermal and isothermal–isoflux, a constant pressure

gradient ðdP=dx ¼ AÞ is required for the compatibility

with Eq. (2). Taking these facts into consideration and

differentiating Eq. (2) with respect to x gives

oT
ox

¼ 0: ð4Þ

Eq. (4) indicates that the temperature is also a function

of y only.

Combining the remaining terms of both Eqs. (2) and

(3) gives

uIV � rB2
0

qm

�
� Q0

k

�
u00 � Q0

k
rB2

0

qm
u� Q0

k
A
qm

� qbg
k

ðu0Þ2

� rB2
0bg
km

u2 ¼ 0; ð5Þ

where a prime denotes ordinary differentiation with re-

spect to y.

Four boundary conditions for u are needed to solve

Eq. (5). These are the two no-slip conditions at both

walls and the other two induced by the thermal

boundary conditions which can be obtained from eval-

uating Eq. (2) at each wall. Therefore, the boundary

conditions for the case of isothermal–isothermal

(T1 � T2) walls can be written as

u
�
� L

2

�
¼ 0; u

L
2

� �
¼ 0;

u00
�
� L

2

�
¼ A

l
� bgðT1 � T0Þ

m
þ rB2

0

l
u
�
� L

2

�
;

u00
L
2

� �
¼ A

l
� bgðT2 � T0Þ

m
þ rB2

0

l
u

L
2

� �
:

ð6Þ

Eqs. (5) and (6) can be written in dimensionless form

by employing the dimensionless quantities given earlier

by Barletta [5]

g ¼ y
D
; U ¼ u

u0
; h ¼ T � T0

DT
;

Gr ¼ gbDTD3

m2
; M2 ¼ rB2

0

l
D2; Re ¼ u0D

m
; ð7Þ

Pr ¼ lc
k
; Br ¼ lu20

kDT
; / ¼ Q0D2

k

(where u0 ¼ AD2=ð48lÞ is a reference velocity, DT is a

reference temperature difference which is different for

different wall thermal boundary conditions, and D ¼ 2L
is the hydraulic diameter) to yield

U IV � ðM2 � /ÞU 00 �M2/U � Gr
Re

BrðU 0Þ2

� Gr
Re

BrM2U 2 � 48/ ¼ 0; ð8Þ

U
�
� 1

4

�
¼ 0; U

1

4

� �
¼ 0;

U 00
�
� 1

4

�
¼ �48þ Rt

2

Gr
Re

;

U 00 1

4

� �
¼ �48� Rt

2

Gr
Re

;

ð9Þ

Fig. 1. Problem schematics and coordinate system.
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where a prime in Eq. (8) denotes ordinary differentiation

with respect to g and Rt ¼ ðT2 � T1Þ=DT is a thermal

ratio parameter for the isothermal–isothermal case.

As a consequence of Eqs. (2), (3) and (8), the di-

mensionless temperature can, be determined from the

equation:

h ¼ � 1

Gr=Re
ð48þ U 00 �M2UÞ: ð10Þ

It is worth, noting here that for the case of isothermal

walls T0 ¼ ðT1 þ T2Þ=2 and DT ¼ T2 � T1 if T1 < T2
(asymmetric wall heating) or DT ¼ m2=ðcD2Þ if T1 ¼ T2
(symmetric wall heating). As a consequence of this,

Rt ¼ 0 for the symmetric wall heating case and Rt ¼ 1

for the asymmetric wall heating case.

3. Analytical solutions

Various analytical solutions for special cases of the

problem described above are possible only in the ab-

sence of both viscous and magnetic dissipation terms.

These are reported for the following nine special cases:

Case 1. Hydromagnetic mixed convection flow in a

vertical channel with isothermal walls.

For this special case the viscous and magnetic dissi-

pations and the heat generation or absorption effect are

neglected (Br ¼ 0 and / ¼ 0). Using this, Eq. (8) reduces

to

U IV �M2U 00 ¼ 0: ð11Þ

Solution of Eq. (11) subject to Eqs. (9) can be shown to

yield

U ¼ C1

M2
sinhðMgÞ þ C2

M2
coshðMgÞ þ C3g þ C4; ð12Þ

where

C1 ¼ �RtGr
2Re

csch
M
4

� �
; C2 ¼ �48sech

M
4

� �
;

C3 ¼
2Rt

M2

Gr
Re

; C4 ¼
48

M2
:

ð13Þ

With U being known, the temperature distribution in

the channel can be found from Eq. (10). This can be

shown to be

h ¼ 2Rtg; ð14Þ

which is the solution reported earlier by Barletta [5].

Case 2. Mixed convection flow in a vertical channel

with isothermal walls in the presence of a heat source or

sink.

For the titled problem Br ¼ 0 and M ¼ 0. For this

situation Eq. (8) reduces to

U IV þ /U 00 ¼ �48/ ð15Þ

for the case of heat generation and

U IV � /U 00 ¼ 48/ ð16Þ

for the case of heat absorption.

Without going into detail, it can be shown that the

solutions of Eqs. (15) and (16) subject to Eqs. (9) can,

respectively, be written as

U ¼ C5 sinð
ffiffiffiffi
/

p
gÞ � 24g2 � 2Rt

/
Gr
Re

g þ 3

2
; ð17Þ

U ¼ C6 sinhð
ffiffiffiffi
/

p
gÞ � 24g2 þ 2Rt

/
Gr
Re

g þ 3

2
; ð18Þ

where

C5 ¼
RtGr=Re

2/ sinð
ffiffiffiffi
/

p
=4Þ

; C6 ¼
RtGr=Re

2/ sinhð
ffiffiffiffi
/

p
=4Þ

: ð19Þ

The corresponding temperature distributions for the

heat generation and heat absorption cases can, respec-

tively, be written as

h ¼ C5/
Gr=Re

sinð
ffiffiffiffi
/

p
gÞ; ð20Þ

h ¼ � C6/
Gr=Re

sinhð
ffiffiffiffi
/

p
gÞ: ð21Þ

It can be shown that as / ! 0, the solutions for U and h
approach those reported by Barletta [5].

Case 3. Hydromagnetic mixed convection flow in a

vertical channel with isothermal walls in the presence of

a heat source or sink.

For this special case, setting Br ¼ 0 in Eq. (8) yields

U IV � ðM2 � /ÞU 00 �M2/U þ 48/ ¼ 0 ð22Þ

for the case of heat generation and

U IV � ðM2 þ /ÞU 00 þM2/U � 48/ ¼ 0 ð23Þ

for the case of heat absorption.

Again, without going into detail, the solutions for the

velocity and temperature distributions (U and h) in the

channel can be written as

U ¼ C7 sinhðMgÞ þ C8 coshðMgÞ

þ C9 sinð
ffiffiffiffi
/

p
gÞ þ 48

M2
; ð24Þ

h ¼ C9ð/ þM2Þ sinð
ffiffiffiffi
/

p
gÞ

Gr=Re
ð25Þ

for the heat generation case and

U ¼ C10 sinhðMgÞ þ C8 coshðMgÞ

þ C11 sinhð
ffiffiffiffi
/

p
gÞ þ 48

M2
; ð26Þ

h ¼ �C11ð/ �M2Þ sinhð
ffiffiffiffi
/

p
gÞ

Gr=Re
; ð27Þ
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where

C7 ¼ � RtGr=Re
2ðM2 þ /Þ sinhðM=4Þ ;

C8 ¼ � 48

M2 coshðM=4Þ ;

C9 ¼
RtGr=Re

2ðM2 þ /Þ sinð
ffiffiffiffi
/

p
=4Þ

;

ð28Þ

C10 ¼ � RtGr=Re
2ðM2 � /Þ sinhðM=4Þ ;

C11 ¼
�RtGr=Re

2ð/ �M2Þ sinhð
ffiffiffiffi
/

p
=4Þ:

ð29Þ

Isoflux–isothermal walls (q1 � T2)
For this situation, the thermal boundary conditions

for the channel walls can be written in the dimensional

form as

q1 ¼ �k
dT
dy

����
�L=2

; T ðL=2Þ ¼ T2: ð30Þ

The dimensionless form of Eqs. (30) can be obtained

by using Eqs. (7) with DT ¼ q1D=k to give

h0
�
� 1

4

�
¼ �1; h

1

4

� �
¼ Rqt; ð31Þ

where Rqt ¼ ðT2 � T0Þ=DT is the thermal ratio parameter

for the isoflux–isothermal case.

Other than the no-slip conditions at the channel

walls, two more boundary conditions in terms of u are

needed to solve Eq. (8) for this case. These are induced

by the conditions given in Eqs. (30) and are obtained

from Eq. (2) as follows:

Differentiating Eq. (2) with respect to y with

dP=dx ¼ A gives

u000 � rB2
0

l
u0 þ bg

m
T 0 ¼ 0: ð32Þ

Eq. (32) is non-dimensionalized by using Eqs. (7) to

give

U 000 �M2U 0 þ Gr
Re

:h0 ¼ 0: ð33Þ

Evaluating Eq. (33) at the left walls (g ¼ �1=4) yields

U 000ð�1=4Þ �M2U 0ð�1=4Þ ¼ Gr
Re

: ð34Þ

The other boundary condition at the right wall can be

shown to be the same as that given for the isothermal–

isothermal case with Rt replaced by Rqt such that

U 00ð1=4Þ ¼ �48� Rqt

2

Gr
Re

: ð35Þ

Case 4. Hydromagnetic mixed convection flow in a

vertical channel with isoflux–isothermal walls.

In the absence of both viscous and magnetic dissi-

pations (Br ¼ 0) and heat generation or absorption

(/ ¼ 0), the analytical solutions for the velocity and

temperature distributions are obtained by solving of

Eqs. (8) and (10) subject to Eqs. (34) and (35) and the

no-slip conditions at the wall. These solutions can be

shown to be

U ¼ C12

M2
sinhðMgÞ þ C13

M2
coshðMgÞ þ C14g þ C15; ð36Þ

h ¼ M2

Gr=Re
½C14g þ C15�; ð37Þ

where

C12 ¼
1

4

Gr
Re

csch
M
4

� �
; C13 ¼�48þGr=Reð1=4þRqtÞ

coshðM=4Þ ;

C14 ¼� Gr
ReM2

; C15 ¼
48þGr=Reð1=4þRqtÞ

M2

ð38Þ

Case 5. Mixed convection flow in a vertical channel

with isoflux–isothermal walls in the presence of a heat

source or sink.

The solutions for the velocity and temperature dis-

tributions for this case are obtained in a similar way as

its isothermal–isothermal counterpart but with the use

of Eqs. (34) and (35) instead of the last two conditions of

Eqs. (9). The velocity and temperature distributions can

be shown to be

U ¼ C16 sinð
ffiffiffiffi
/

p
gÞ þ C17 cosð

ffiffiffiffi
/

p
gÞ � 24g2 þ C18g

þ C19; ð39Þ

h ¼ /
Gr=Re

½C16 sinð
ffiffiffiffi
/

p
gÞ þ C17 cosð

ffiffiffiffi
/

p
gÞ�; ð40Þ

where

C16 ¼ �Gr=Re½cosð
ffiffiffiffi
/

p
=4Þ þ

ffiffiffiffi
/

p
Rqt sinð

ffiffiffiffi
/

p
=4Þ�

/3=2 cosð
ffiffiffiffi
/

p
=2Þ

;

C17 ¼
Gr=Re½sinð

ffiffiffiffi
/

p
=4Þ þ

ffiffiffiffi
/

p
Rqt cosð

ffiffiffiffi
/

p
=4Þ�

/3=2 cosð
ffiffiffiffi
/

p
=2Þ

;

C18 ¼ �4C16 sinð
ffiffiffiffi
/

p
=4Þ;

C19 ¼
3

2
� C17 cosð

ffiffiffiffi
/

p
=4Þ

ð41Þ

for the heat generation case and

U ¼ C20 sinhð
ffiffiffiffi
/

p
gÞ þ C21 coshð

ffiffiffiffi
/

p
gÞ � 24g2

þ C22g þ C23; ð42Þ

h ¼ �/
Gr=Re

½C20 sinhð
ffiffiffiffi
/

p
gÞ þ C21 coshð

ffiffiffiffi
/

p
gÞ�; ð43Þ

A.J. Chamkha / International Journal of Heat and Mass Transfer 45 (2002) 2509–2525 2513



where

C20 ¼
Gr=Re½coshð

ffiffiffiffi
/

p
=4Þ � Rqt

ffiffiffiffi
/

p
sinhð

ffiffiffiffi
/

p
=4Þ�

/3=2 coshð
ffiffiffiffi
/

p
=2Þ

;

C21 ¼
�Gr=Re½sinhð

ffiffiffiffi
/

p
=4Þ þ Rqt

ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=4Þ�

/3=2 coshð
ffiffiffiffi
/

p
=2Þ

;

C22 ¼ �4C20 sinhð
ffiffiffiffi
/

p
=4Þ; C23 ¼

3

2
� C21 coshð

ffiffiffiffi
/

p
=4Þ

ð44Þ
for the heat absorption case.

Case 6. Hydromagnetic mixed convection flow in a

vertical channel with isoflux–isothermal walls in the

presence of a heat source or sink.

This problem is the isoflux–isothermal counterpart of

the problem for isothermal–isothermal walls. Therefore,

the method of solution is the same except the boundary

conditions (34) and (35) are used instead of the last

conditions of Eqs. (9). The general solutions for U and h
associated, with this problem can be shown to be

U ¼ C24 sinhðMgÞ þ C25 coshðMgÞ

þ C26 sinð
ffiffiffiffi
/

p
gÞ þ C27 cosð

ffiffiffiffi
/

p
gÞ þ 48

M2
; ð45Þ

h ¼ ð/ þM2Þ
Gr=Re

½C26 sinð
ffiffiffiffi
/

p
gÞ þ C27 cosð

ffiffiffiffi
/

p
gÞ�; ð46Þ

where

C24 ¼ �C26 sinð
ffiffiffiffi
/

p
=4Þ

sinhðM=4Þ ;

C25 ¼
�48=M2 � C27 cosð

ffiffiffiffi
/

p
=4Þ

coshðM=4Þ ;

C26 ¼
�Gr=Re½Rqt

ffiffiffiffi
/

p
sinð

ffiffiffiffi
/

p
=4Þ þ cosð

ffiffiffiffi
/

p
=4Þ�ffiffiffiffi

/
p

ðM2 þ /Þ cosð
ffiffiffiffi
/

p
=2Þ

;

C27 ¼
Gr=Re½Rqt

ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=4Þ þ sinð

ffiffiffiffi
/

p
=4Þ�ffiffiffiffi

/
p

ðM2 þ /Þ cosð
ffiffiffiffi
/

p
=2Þ

ð47Þ

for the heat generation case and

U ¼C28 sinhðMgÞ þ C29 coshðMgÞ

þ C30 sinhð
ffiffiffiffi
/

p
gÞ þ C31 coshð

ffiffiffiffi
/

p
gÞ þ 48

M2
; ð48Þ

h ¼ �ð/ �M2Þ
Gr=Re

½C30 sinhð
ffiffiffiffi
/

p
gÞ þ C31 coshð

ffiffiffiffi
/

p
gÞ�;

ð49Þ
where

C28 ¼ �C30 sinhð
ffiffiffiffi
/

p
=4Þ

sinhðM=4Þ ;

C29 ¼
�48=M2 � C31 coshð

ffiffiffiffi
/

p
=4Þ

coshðM=4Þ ;

C30 ¼
Gr=Re½coshð

ffiffiffiffi
/

p
=4Þ � Rqt

ffiffiffiffi
/

p
sinhð

ffiffiffiffi
/

p
=4Þ�ffiffiffiffi

/
p

ð/ �M2Þ coshð
ffiffiffiffi
/

p
=2Þ

;

C31 ¼
�Gr=Re½sinhð

ffiffiffiffi
/

p
=4Þ þ Rqt

ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=4Þ�ffiffiffiffi

/
p

ð/ �M2Þ coshð
ffiffiffiffi
/

p
=2Þ

ð50Þ

for the heat absorption case.

Isothermal–isoflux walls (T1 � q2)
The dimensional form of the thermal boundary

conditions for this case can be written as

T ð�L=2Þ ¼ T1; q2 ¼ �k
dT
dy

����
L=2

; ð51Þ

where q2 is a constant. Eqs. (51) can be made dimen-

sionless by using Eqs. (7) with DT ¼ q2D=k. This can be

shown to give

hð�1=4Þ ¼ Rtq; h0ð1=4Þ ¼ �1; ð52Þ

where Rtq ¼ ðT1 � T0Þ=DT is the thermal ratio parameter

for the isothermal–isoflux case.

Similar to the procedure done in the previous section

on isoflux–isothermal walls, the dimensionless form of

the boundary conditions obtained from using Eq. (2)

and applying Eq. (52) can be written as

U 00ð�1=4Þ ¼ �48� Rtq

Gr
Re

;

U 000ð1=4Þ �M2U 0ð1=4Þ ¼ Gr
Re

:

ð53Þ

Case 7. Hydromagnetic mixed convection flow in a

vertical channel with isothermal–isoflux walls.

For the above titled problem with Br ¼ 0 and / ¼ 0,

the velocity and temperature distributions in the vertical

channel can be shown to be

U ¼ C32

M2
sinhðMgÞ þ C33

M2
coshðMgÞ þ C34g þ C35; ð54Þ

h ¼ 1

Gr=Re
½M2ðC34g þ C35Þ � 48�; ð55Þ

where

C32 ¼
1

4

Gr
Re

csch
M
4

� �
;

C33 ¼
�48� Gr=ReðRtq � 1=4Þ

coshðM=4Þ ;

C34 ¼ � Gr
ReM 2

;

C35 ¼
48þ Gr=ReðRtq � 1=4Þ

M2
:

ð56Þ

Case 8. Mixed convection flow in a vertical channel

with isothermal–isoflux walls in the presence of a heat

source or sink.

In the absence of the magnetic field ðM ¼ 0Þ and both

of the viscous and magnetic dissipations, solution of

Eqs. (8) and (10) subject to Eqs. (53) and the first two

conditions of Eqs. (9) yields

U ¼ C36 sinð
ffiffiffiffi
/

p
gÞ þ C37 cosð

ffiffiffiffi
/

p
gÞ � 24g2 þ C38g þ C39;

ð57Þ

h ¼ /
Gr=Re

½C36 sinð
ffiffiffiffi
/

p
gÞ þ C37 cosð

ffiffiffiffi
/

p
gÞ�; ð58Þ
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where

C36 ¼ �Gr=Re½cosð
ffiffiffiffi
/

p
=4Þ � Rtq

ffiffiffiffi
/

p
sinð

ffiffiffiffi
/

p
=4Þ�

/3=2 cosð
ffiffiffiffi
/

p
=2Þ

;

C37 ¼ �Gr=Re½sinð
ffiffiffiffi
/

p
=4Þ � Rtq

ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=4Þ�

/3=2 cosð
ffiffiffiffi
/

p
=4Þ

;

C38 ¼ �4C36 sinð
ffiffiffiffi
/

p
=4Þ;

C39 ¼
3

2
� C37 cosð

ffiffiffiffi
/

p
=4Þ

ð59Þ

for the heat generation case and

U ¼ C40 sinhð
ffiffiffiffi
/

p
gÞ þ C41 coshð

ffiffiffiffi
/

p
gÞ � 24g2

þ C42g þ C43; ð60Þ

h ¼ �/
Gr=Re

½C40 sinhð
ffiffiffiffi
/

p
gÞ þ C41 coshð

ffiffiffiffi
/

p
gÞ�; ð61Þ

where

C40 ¼
Gr=Re½coshð

ffiffiffiffi
/

p
=4Þ þ Rtq

ffiffiffiffi
/

p
sinhð

ffiffiffiffi
/

p
=4Þ�

/3=2 coshð
ffiffiffiffi
/

p
=2Þ

;

C41 ¼
Gr=Re½sinhð

ffiffiffiffi
/

p
=4Þ � Rtq

ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=4Þ�

/3=2 coshð
ffiffiffiffi
/

p
=2Þ

;

C42 ¼ �4C40 sinhð
ffiffiffiffi
/

p
=4Þ;

C43 ¼
3

2
� C41 coshð

ffiffiffiffi
/

p
=4Þ

ð62Þ

for the heat absorption case.

Case 9. Hydromagnetic mixed convection flow in a

vertical channel with isothermal–isoflux walls in the

presence of a heat source or sink.

The analytical solutions for the velocity and tem-

perature profiles within the vertical channel for this case

can be shown to be

U ¼C44 sinhðMgÞ þ C45 coshðMgÞ

þ C46 sinð
ffiffiffiffi
/

p
gÞ þ C47 cosð

ffiffiffiffi
/

p
gÞ þ 48

M2
; ð63Þ

h ¼ ð/ þM2Þ
Gr=Re

½C46 sinð
ffiffiffiffi
/

p
gÞ þ C47 cosð

ffiffiffiffi
/

p
gÞ�; ð64Þ

where

C44 ¼ �C46

sinð
ffiffiffiffi
/

p
=4Þ

sinhðM=4Þ ;

C45 ¼
�48=M2 � C47 cosð

ffiffiffiffi
/

p
=4Þ

coshðM=4Þ ;

C46 ¼
�Gr=Re½cosð

ffiffiffiffi
/

p
=4Þ � Rtq

ffiffiffiffi
/

p
sinð

ffiffiffiffi
/

p
=4Þ�ffiffiffiffi

/
p

ðM2 þ /Þ cosð
ffiffiffiffi
/

p
=2Þ

;

C47 ¼
�Gr=Re½sinð

ffiffiffiffi
/

p
=4Þ � Rtq

ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=4Þ�ffiffiffiffi

/
p

ðM2 þ /Þ cosð
ffiffiffiffi
/

p
=2Þ

ð65Þ

for the heat generation case and

U ¼C48 sinhðMgÞ þ C49 coshðMgÞ

þ C50 sinhð
ffiffiffiffi
/

p
gÞ þ C51 coshð

ffiffiffiffi
/

p
gÞ þ 48

M2
; ð66Þ

h ¼ �ð/ �M2Þ
Gr=Re

½C50 sinhð
ffiffiffiffi
/

p
gÞ þ C51 coshð

ffiffiffiffi
/

p
gÞ�;

ð67Þ

C48 ¼ �C50

sinhð
ffiffiffiffi
/

p
=4Þ

sinhðM=4Þ ;

C49 ¼
�48=M2 � C51 coshð

ffiffiffiffi
/

p
=4Þ

coshðM=4Þ ;

C50 ¼
Gr=Re½coshð

ffiffiffiffi
/

p
=4Þ þ Rtq

ffiffiffiffi
/

p
sinhð

ffiffiffiffi
/

p
=4Þ�ffiffiffiffi

/
p

ð/ �M2Þ coshð
ffiffiffiffi
/

p
=2Þ

;

C51 ¼
Gr=Re½sinhð

ffiffiffiffi
/

p
=4Þ � Rtq

ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=4Þ�ffiffiffiffi

/
p

ð/ �M2Þ coshð
ffiffiffiffi
/

p
=2Þ

ð68Þ

for the heat absorption case.

4. Heat transfer aspects

The Nusselt numbers at each of the channel walls are

important physical characteristics. These can be defined

for the three different thermal boundary conditions

considered in the present work as follows:

4.1. Isothermal–isothermal (T1 � T2) walls

Nu1 ¼
h1D
k

¼ D
DT

dT
dy

����
�L=2

¼ h0ð�1=4Þ;

Nu2 ¼
h2D
k

¼ D
DT

dT
dy

����
L=2

¼ h0ð1=4Þ;
ð69Þ

where a primedenotes differentiationwith respect to g and
Nu1 and Nu2 are the Nusselt numbers at the left and right

walls, respectively. h1 and h2 are the heat transfer coeffi-

cient evaluated at the left and right walls, respectively.

Application of Eqs. (69) for case 3 gives

Nu1 ¼ Nu2 ¼
Rt

ffiffiffiffi
/

p

2
cotð

ffiffiffiffi
/

p
=4Þ ð70Þ

for the heat generation case and

Nu1 ¼ Nu2 ¼
Rt

ffiffiffiffi
/

p

2
cothð

ffiffiffiffi
/

p
=4Þ ð71Þ

for the heat absorption case.

It can easily be shown by using the fact that the limit

of x cotðxÞ or ðx cothðxÞÞ as x ! 0 is equal to unity that

in the absence of heat generation or absorption, the

limits of Eqs. (70) and (71) as / ! 0 yield

Nu1 ¼ Nu2 ¼ 2Rt; ð72Þ
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which is consistent with the result reported by Barletta

[5].

4.2. Isoflux–isothermal ðq1 � T2Þ walls

Nu1 ¼
h1D
k

¼ Dq1
kðT1 � T0Þ

¼ 1

h1

;

Nu2 ¼
h2D
k

¼ D
DT

dT
dy

� �
2

¼ h0
2;

ð73Þ

where the quantities with subscripts 1 and 2 are under-

stood to be evaluated at the left ðg ¼ �1=4Þ and right

ðg ¼ 1=4Þ walls, respectively.
For the general case 6, Nu1 and Nu2 are given by

Nu1 ¼
Gr=Re

ð/þM2Þ½C27 cosð
ffiffiffiffi
/

p
=4Þ �C26 sinð

ffiffiffiffi
/

p
=4Þ�

; ð74Þ

Nu2 ¼
ffiffiffiffi
/

p
ð/ þM2Þ
Gr=Re

½C26 cosð
ffiffiffiffi
/

p
=4Þ � C27 sinð

ffiffiffiffi
/

p
=4Þ�

ð75Þ

for the heat generation case and

Nu1 ¼ � Gr=Re
ð/ �M2Þ½�C30 sinhð

ffiffiffiffi
/

p
=4Þ þ C31 coshð

ffiffiffiffi
/

p
=4Þ�

;

ð76Þ

Nu2 ¼
�

ffiffiffiffi
/

p
ð/ �M2Þ
Gr=Re

½C30 coshð
ffiffiffiffi
/

p
=4Þ

þ C31 sinhð
ffiffiffiffi
/

p
=4Þ� ð77Þ

for the heat absorption case.

4.3. Isothermal–isoflux ðT1 � q2Þ walls

Nu1 ¼
h1D
k

¼ D
DT

dT
dy

� �
1

¼ h0
1;

Nu2 ¼
h2D
k

¼ Dq2
kðT2 � T0Þ

¼ 1

h2

:

ð78Þ

Employing Eqs. (78) for the general case 9 yields the

following Nusselt numbers:

Nu1 ¼
ffiffiffiffi
/

p
ð/ þM2Þ
Gr=Re

½C46 cosð
ffiffiffiffi
/

p
=4Þ þ C47 sinð

ffiffiffiffi
/

p
=4Þ�;

ð79Þ

Nu2 ¼
Gr=Re

ð/ þM2Þ½C46 sinð
ffiffiffiffi
/

p
=4Þ þ C47 cosð

ffiffiffiffi
/

p
=4Þ�

ð80Þ

for the heat generation case and

Nu1 ¼ �
ffiffiffiffi
/

p
ð/ �M2Þ
Gr=Re

½C50 coshð
ffiffiffiffi
/

p
=4Þ

� C51 sinhð
ffiffiffiffi
/

p
=4Þ�; ð81Þ

Nu2 ¼ � Gr=Re
ð/ �M2Þ½C50 sinhð

ffiffiffiffi
/

p
=4Þ þ C51 coshð

ffiffiffiffi
/

p
=4Þ�

ð82Þ

for the heat absorption case.

5. Reversed flow conditions

Depending on the value of the mixed convection

parameter Gr=Re and the wall thermal boundary con-

ditions, a flow reversal condition may occur. It is ben-

eficial to understand when this situation occurs and

determine a reversed flow zone associated with each of

the problems discussed earlier. The occurrence of a re-

versed flow condition is ensured when the slopes of the

velocity profile at the walls have the same sign. That is

½U 0ð�1=4Þ�½U 0ð1=4Þ� > 0: ð83Þ

The critical condition for flow reversal at the walls oc-

curs when the wall slopes vanish such that

U 0ð�1=4Þ ¼ 0; U 0ð1=4Þ ¼ 0: ð84Þ

Therefore, the two lines given by Eqs. (84) constitute the

borders of the reversed flow region.

The conditions for reversed flow are found below for

the three general cases 3, 6 and 9. The other problems

discussed earlier represent special cases of these three

general ones.

5.1. Case 3

For this case, the velocity profile, is given by Eq. (24)

for the heat generation case and by Eq. (26) for the heat

absorption case. Differentiating U with respect to g,
evaluating the result at both g ¼ �1=4 and g ¼ 1=4, and
then solving for the mixed convection parameter Gr=Re
produce the borders of the reversed flow regions. These

can be shown to be

Gr
Re

� �
1

¼ C8M sinhðM=4Þ
MC

7 coshðM=4Þ þ
ffiffiffiffi
/

p
C

9 cosð
ffiffiffiffi
/

p
=4Þ

; ð85Þ

Gr
Re

� �
2

¼ � Gr
Re

� �
1

; ð86Þ

where the subscripts 1 and 2 correspond to the left

ðg ¼ �1=4Þ and right ðg ¼ 1=4Þ walls, respectively, for

the heat generation, case and

Gr
Re

� �
1

¼ C8M sinhðM=4Þ
MC

10 coshðM=4Þ þ
ffiffiffiffi
/

p
C

11 coshð
ffiffiffiffi
/

p
=4Þ

;

ð87Þ

Gr
Re

� �
2

¼ � Gr
Re

� �
1

ð88Þ
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for the heat absorption case. In Eqs. (85)–(88), the

constants C
7 ;C


9 ;C


10 and C

11 are given by

C
7 ¼ � Rt

2ðM2 þ /Þ sinhðM=4Þ ;

C
9 ¼

Rt

2ðM2 þ /Þ sinð
ffiffiffiffi
/

p
=4Þ

;

C
10 ¼ � Rt

2ðM2 � /Þ sinhðM=4Þ ;

C
11 ¼

Rt

2ðM2 � /Þ sinhð
ffiffiffiffi
/

p
=4Þ

:

ð89Þ

It should be noted that, with some involved mathemat-

ical manipulation, the limits of Eqs. (85)–(88) as both of

M and / approach zero can be shown to lead to

ðGr=ReÞ2 ¼ �ðGr=ReÞ1 ¼ �288=Rt. Then, for Rt ¼ 1

(asymmetric heating) ðGr=ReÞ2 ¼ �ðGr=ReÞ1 ¼ �288

which is the same result reported by Barletta [5].

5.2. Case 6

The reversed flow conditions for this case are ob-

tained by the same way as done for case 3. Without

going into details the mixed convection parameter for

these conditions can be shown to be

Gr
Re

� �
1

¼ �48=M tanhðM=4Þ=½C
24M coshðM=4Þ

þ C
27M tanhðM=4Þ cosð

ffiffiffiffi
/

p
=4Þ

þ C
26

ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=4Þ

þ C
27

ffiffiffiffi
/

p
sinð

ffiffiffiffi
/

p
=4Þ�; ð90Þ

Gr
Re

� �
2

¼ 48=M tanhðM=4Þ=½C
24M coshðM=4Þ

� C
27M tanhðM=4Þ cosð

ffiffiffiffi
/

p
=4Þ

þ C
26

ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=4Þ

� C
27

ffiffiffiffi
/

p
sinð

ffiffiffiffi
/

p
=4Þ�; ð91Þ

where

C
24 ¼

�C
26 sinð

ffiffiffiffi
/

p
=4Þ

sinhðM=4Þ ;

C
26 ¼

�Rqt

ffiffiffiffi
/

p
sinð

ffiffiffiffi
/

p
=4Þ � cosð

ffiffiffiffi
/

p
=4Þffiffiffiffi

/
p

ðM2 þ /Þ cosð
ffiffiffiffi
/

p
=2Þ

;

C
27 ¼

Rqt

ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=4Þ þ sinð

ffiffiffiffi
/

p
=4Þffiffiffiffi

/
p

ðM2 þ /Þ cosð
ffiffiffiffi
/

p
=2Þ

ð92Þ

for the heat generation case and

Gr
Re

� �
1

¼ �48=M tanhðM=4Þ=½C
28M coshðM=4Þ

þ C
31M tanhðM=4Þ coshð

ffiffiffiffi
/

p
=4Þ

þ C
30

ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=4Þ

� C
31

ffiffiffiffi
/

p
sinhð

ffiffiffiffi
/

p
=4Þ�; ð93Þ

Gr
Re

� �
2

¼ 48=M tanhðM=4Þ=½C
28M coshðM=4Þ

� C
31M tanhðM=4Þ coshð

ffiffiffiffi
/

p
=4Þ

þ C
30

ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=4Þ

þ C
31

ffiffiffiffi
/

p
sinhð

ffiffiffiffi
/

p
=4Þ�; ð94Þ

where

C
28 ¼

�C
30 sinð

ffiffiffiffi
/

p
=4Þ

sinhðM=4Þ ;

C
30 ¼

coshð
ffiffiffiffi
/

p
=4Þ � Rqt

ffiffiffiffi
/

p
sinhð

ffiffiffiffi
/

p
=4Þffiffiffiffi

/
p

ð/ �M2Þ coshð
ffiffiffiffi
/

p
=2Þ

;

C
31 ¼

� sinhð
ffiffiffiffi
/

p
=4Þ � Rqt

ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=4Þffiffiffiffi

/
p

ð/ �M2Þ coshð
ffiffiffiffi
/

p
=2Þ

ð95Þ

for the heat absorption case.

5.3. Case 9

The expressions for the mixed convection parameter

for which reversed flow conditions near the walls exist

can be shown for this case to be

Gr
Re

� �
1

¼ �48=M tanhðM=4Þ C
44M coshðM=4Þ

h.

þ C
47M tanhðM=4Þ cosð

ffiffiffiffi
/

p
=4Þ

þ C
46

ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=4Þ

þ C
47

ffiffiffiffi
/

p
sinð

ffiffiffiffi
/

p
=4Þ

i
; ð96Þ

Gr
Re

� �
2

¼ 48=M tanhðM=4Þ C
44M coshðM=4Þ

h.

� C
47M tanhðM=4Þ cosð

ffiffiffiffi
/

p
=4Þ

þ C
46

ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=4Þ

� C
47

ffiffiffiffi
/

p
sinð

ffiffiffiffi
/

p
=4Þ

i
; ð97Þ

where

C
44 ¼ �C

46

sinð
ffiffiffiffi
/

p
=4Þ

sinhðM=4Þ ;

C
46 ¼

�½cosð
ffiffiffiffi
/

p
=4Þ � Rtq

ffiffiffiffi
/

p
sinð

ffiffiffiffi
/

p
=4Þ�ffiffiffiffi

/
p

ðM2 þ /Þ cosð
ffiffiffiffi
/

p
=2Þ

;

C
47 ¼

�½sinð
ffiffiffiffi
/

p
=4Þ � Rtq

ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=4Þ�ffiffiffiffi

/
p

ðM2 þ /Þ cosð
ffiffiffiffi
/

p
=2Þ

ð98Þ

for the heat generation case and

Gr
Re

� �
1

¼ �48=M tanhðM=4Þ C
48M coshðM=4Þ

h.

þ C
51M tanhðM=4Þ coshð

ffiffiffiffi
/

p
=4Þ

þ C
50

ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=4Þ

� C
51

ffiffiffiffi
/

p
sinhð

ffiffiffiffi
/

p
=4Þ

i
; ð99Þ
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Gr
Re

� �
2

¼ 48=M tanhðM=4Þ C
48M coshðM=4Þ

h.

� C
51M tanhðM=4Þ coshð

ffiffiffiffi
/

p
=4Þ

þ C
50

ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=4Þ

þ C
51

ffiffiffiffi
/

p
sinhð

ffiffiffiffi
/

p
=4Þ

i
; ð100Þ

where

C
48 ¼ �C

50

sinhð
ffiffiffiffi
/

p
=4Þ

sinhðM=4Þ ;

C
50 ¼

coshð
ffiffiffiffi
/

p
=4Þ þ Rtq

ffiffiffiffi
/

p
sinhð

ffiffiffiffi
/

p
=4Þffiffiffiffi

/
p

ð/ �M2Þ coshð
ffiffiffiffi
/

p
=2Þ

;

C
51 ¼

sinhð
ffiffiffiffi
/

p
=4Þ � Rtq

ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=4Þffiffiffiffi

/
p

ð/ �M2Þ coshð
ffiffiffiffi
/

p
=2Þ

ð101Þ

for the heat absorption case.

6. Selected graphical results

Fig. 2 displays typical velocity profiles U in a vertical

channel with asymmetric ðRt ¼ 1:0Þ isothermal–isother-

mal wall heating conditions for different values of the

mixed convection parameter Gr=Re. For a vanishing

value of Gr=Re, the usual symmetric Hagen–Poiseuille

velocity profile is obtained. For an upward flow, in-

creases in the value of Gr=Re have the tendency to in-

crease the momentum of the flow close to the hot right

wall causing the velocity profile to become asymmetric.

As mentioned before, it is expected that beyond a critical

value of Gr=Re, a flow, reversal condition near the cold

left wall occurs and that this phenomenon increases

further as Gr=Re increases. Similarly, for a downward

flow, the induced flow increases close to the cold wall

with the reversed flow phenomenon occurring close to

the hot wall. The values of Gr=Re ¼ 213 and

Gr=Re ¼ �213 are obtained from Eqs. (85) and (86),

respectively, and they represent the positive and negative

critical values of Gr=Re. That is, for Gr=Re > 213 a re-

versed flow occurs close to the cold wall and for

Gr=Re < �213 a reversed flow takes place near the hot

wall. These behaviors are clearly depicted in Fig. 2.

Fig. 3 presents representative velocity profiles U in a

vertical channel with asymmetric isothermal–isothermal

wall conditions for various values of the Hartmann

number M and two chosen values of the mixed con-

vection parameters Gr=Re. The chosen values of

Gr=Re ¼ 288 and Gr=Re ¼ �288 represent the critical

conditions for flow reversal at the left and right walls,

respectively, in the absence of the magnetic and heat

generation or absorption effects. That is, any value of

Gr=Re > 288 results in reversed flow near the left wall

and any value of Gr=Re < �288 produces flow reversal

at the right wall. This figure serves dual purposes. It

shows the effect of the magnetic field on the fluid flow in

the channel and its influence on the flow reversal con-

ditions. Application of a transverse magnetic field to an

electrically conducting fluid gives rise to the magnetic

Lorentz force which acts in the direction opposite to that

of the fluid causing it to slow down. This drag-like force

increases as the strength of the magnetic field (repre-

sented by Hartmann number M) increases producing

further reductions in the fluid velocity. For the buoy-

ancy aiding flow case where Gr=Re ¼ 288, increasing the

Hartmann number reduces the fluid adjacent to the cold

left wall causing a flow reversal condition there. This

reversed flow phenomenon increases as the strength of

the magnetic field increases. For the buoyancy opposing

flow case where Gr=Re ¼ �288, the same phenomenon

of reversed flow occurs but close to the hot right wall.

Figs. 4 and 5 illustrate the influence of both the

Hartmann number M and the heat generation or ab-

sorption coefficient / on the velocity profiles in a vertical

channel with isoflux–isothermal wall conditions, respec-

tively, In each of these figures, two conditions of thermal

buoyancy and thermal ratio parameters ðRqt ¼ �0:5; 0:5Þ
are considered.For a given value ofRqt, the corresponding

Fig. 2. Effects of Gr=Re on velocity profiles for ðT1 � T2Þ case.

Fig. 3. Effects of M on velocity profiles for ðT1 � T2Þ case.
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critical values of Gr=Re are obtained from the analyti-

cal solutions for reversed flow conditions associated

with the isoflux–isothermal wall conditions reported in

Eqs. (90)–(95). Similar to Fig. 3, Fig. 4 shows that the

effect of increasing the value ofM produces reduced flow

in the channel and reversed flow near the left wall with

constant heat flux for Rqt ¼ 0:5 and close to the isother-

mal right wall for Rqt ¼ �0:5. In Fig. 5, it is seen that heat

generation ð/ > 0Þ reduces the flow in the channel while

heat absorption, ð/ < 0Þ increases the fluid velocity in the
channel for the two considered values of the thermal ratio

parameter Rqt. In addition, it is predicted that a reversed

flow condition occurs close to the left wall for

Gr=Re ¼ �57:6 and Rqt ¼ 0:5 with heat generation

ð/ ¼ 1:0Þ and close to the right wall forGe=Re ¼ 144 and

Rqt ¼ �0:5 with / ¼ 3:0. The region of reversed flow in-

creases as the value of / increases for both cases.

Fig. 6 displays the influence of / on the temperature

profiles in a vertical channel with isoflux–isothermal

walls for both Rqt ¼ 0:5 and Rqt ¼ �0:5. It is seen that

the temperature at the wall with constant heat flux de-

creases as the heat generation or absorption coefficient /
increases for both values of Rqt considered. However, the

wall temperature is more influenced for the case of

Rqt ¼ �0:5 than for the case of Rqt ¼ 0:5.
Fig. 7 depicts the variations in the velocity profiles U

in a vertical channel with isothermal–isoflux wall con-

ditions as a result of changingM or / for a thermal ratio

parameter Rqt ¼ 0:5 and a mixed convection parameter

Gr=Re ¼ �144. This figure predicts the same behaviors

as those observed in Figs. 4 and 5 for the isoflux–iso-

thermal case. That is, owing the presence of either of the

magnetic field or the heat generation effects, the fluid

velocity in the channel decreases and reversed flow oc-

curs close to the isothermal walls.

In Fig. 8, the value ofGr=Re required for flow reversal

close to the cold left wall for the isothermal–isothermal

walls case as a function of Rt for different values ofM and

/ is plotted. For Rt ¼ 0 (symmetric isothermal wall

heating) no reversed flow occurs. However, Rt 6¼ 0, the

velocity profiles in the channel become asymmetric and

flow reversal close to the cold wall may occur. The degree

of asymmetry increases as Rt increases and the flow re-

versal critical value of Gr=Re decreases inversely with Rt

as shown previously. Again, the effects of the magnetic

field and heat generation produce reversed flow near the

Fig. 4. Effects of M on velocity profiles for ðq1 � T2Þ case.

Fig. 5. Effects of / on velocity profiles for ðq1 � T2Þ case.

Fig. 6. Effects of / on temperature profiles for ðq1 � T2Þ case.

Fig. 7. Effects of M and / on velocity profiles for ðT1 � q2Þ
case.
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cold wall in the neighborhood of the critical value of

Gr=Re. Therefore, the critical value ofGr=Re decreases as
either M or / increases for all values of Rt. These be-

haviors are apparent from Fig. 8. It is also noted that the

influence of M on the critical value of Gr=Re is stronger
than that of / especially for the isothermal walls case. As

predicted by Eq. (86), the critical value of Gr=Re for re-

versed flow close to the hot right wall is exactly the

negative of the critical value of Gr=Re associated with the

cold wall for all values of M, Rt, and /.
The effects of the heat generation or absorption, co-

efficient / and the thermal ratio parameters (Rt;Rqt and

RtqÞ on the Nusselt number for the isothermal–isother-

mal, isoflux–isothermal and the isothermal–isoflux cases

are presented in Figs. 9 through 11, respectively. For the

isothermal–isothermal case, it is predicted that the

Nusselt number at the cold wall (or the hot wall as pre-

dicted by Eqs. (70) and (71)) increases with increases in

the values of Rt and decreases as the value of / increases

as shown in Fig. 9. However, for the isoflux–isothermal

and isothermal–isoflux cases, the Nusselt numbers at the

isothermal walls are uniform for the case of / ¼ 0 for all

values of Rqt and Rtq while they decrease or increase with

Rqt and Rtq depending on the value of / 6¼ 0. For ex-

ample, the Nusselt number at the right wall (Nu2) for the
isoflux–isothermal case decreases with Rqt for heat gen-

eration (/ > 0) while it increases with Rqt when heat

absorption effects (/ < 0) are present. The opposite effect

is predicted for the Nusselt number at the left wall (Nu1)
for the isothermal–isoflux case for which (Nu1) increases
with Rtq for / > 0 and decreases with Rtq for / < 0. In

addition, the values of Nu2 (for the case of isoflux–iso-

thermal case) and Nu1 (for the case of isothermal–isoflux

case) are the same at the intersection, points when

Rqt ¼ �0:25 and Rtq ¼ 0:25 for all values of / 6¼ 0. It is

observed that the influence of heat generation, (/ ¼ 3:0)
on both, Nu2 and Nu1 for both cases is more pronounced

than that of the corresponding heat absorption value

/ ¼ 3:0. These facts are apparent from Figs. 10 and 11.

6.1. Analytical solutions for forced convection in a channel

with viscous dissipation and Joule heating

In this section, closed-form solutions for the velocity

and temperature profiles as well as the Nusselt numbers

Fig. 8. Effects of M and / on reversed flow for ðT1 � T2Þ case.

Fig. 9. Effects of Rt and / on Nusselt number.

Fig. 10. Effects of Rqt and / on Nusselt number.

Fig. 11. Effects of Rtq and / on Nusselt number.
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are obtained when both viscous dissipation and Joule

heating are present and buoyancy effects are absent. For

this situation the following equations and boundary

conditions hold:

U 00 �M2U þ 48 ¼ 0; ð102Þ

h00 þ /h þ BrðU 0Þ2 þ BrM2U 2 ¼ 0; ð103Þ

Uð�1=4Þ ¼ Uð1=4Þ ¼ 0; ð104Þ

hð�1=4Þ ¼ �Rt=2;

hð1=4Þ ¼ Rt=2 for ðT1 � T2Þ case; ð105Þ

h0ð�1=4Þ ¼ �1;

hð1=4Þ ¼ Rqt for ðq1 � T2Þ case; ð106Þ

hð�1=4Þ ¼ �Rtq;

h0ð1=4Þ ¼ �1 for ðT1 � q2Þ case: ð107Þ

Without going into detail, it can be shown that the

solutions for U and h for the case of heat generation

ð/ > 0Þ can be written as

U ¼ ð48=M2Þ½1� sechðM=4Þ coshðMgÞ�; ð108Þ

h ¼ N1 þ N2 coshð2MgÞ þ N3 coshðMgÞ

þ N4 cosð
ffiffiffi
h

p
gÞ þ N5 sinð

ffiffiffiffi
/

p
gÞ; ð109Þ

where

N1 ¼ �Brð48=M2Þ2

/
;

N2 ¼ �Brð48=M2Þ2 sech2ðM=4Þ
4M2 þ /

;

N3 ¼
2Brð48=M2Þ2 sechðM=4Þ

M2 þ /

ð110Þ

and

N4 ¼ � ½N1 þ N2 coshðM=2Þ þ N3 coshðM=4Þ�
cosð

ffiffiffiffi
/

p
=4Þ

;

N5 ¼
Rt

2 sinð
ffiffiffiffi
/

p
=4Þ

ð111Þ

for the isothermal–isothermal ðT1 � T2Þ case;

N4 ¼ Rqt

ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=4Þ

n
þ sinð

ffiffiffiffi
/

p
=4Þ

� N2

ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=4Þ coshðM=2Þ

h

þ 2M sinð
ffiffiffiffi
/

p
=4Þ sinhðM=2Þ

i

� N3

ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=4Þ coshðM=4Þ

h

þ M sinð
ffiffiffiffi
/

p
=4Þ sinhðM=4Þ

i

� N1

ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=4Þ

o. ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=2Þ

h i
;

N5 ¼ Rqt

ffiffiffiffi
/

p
sinð

ffiffiffiffi
/

p
=4Þ

n
þ cosð

ffiffiffiffi
/

p
=4Þ

� N2 2M sinhðM=2Þ cosð
ffiffiffiffi
/

p
=4Þ

h

þ
ffiffiffiffi
/

p
sinð

ffiffiffiffi
/

p
=4Þ coshðM=2Þ

i

� N3 M sinhðM=4Þ cosð
ffiffiffiffi
/

p
=4Þ

h

þ
ffiffiffiffi
/

p
sinð

ffiffiffiffi
/

p
=4Þ coshðM=4Þ

i

� N1

ffiffiffiffi
/

p
sinð

ffiffiffiffi
/

p
=4Þ

o.h
�

ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=2Þ

i
ð112Þ

for the isoflux–isothermal ðq1 � T2Þ case;

N4 ¼ Rtq

ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=4Þ

n
� sinð

ffiffiffiffi
/

p
=4Þ

� N2 2M sinhðM=2Þ sinð
ffiffiffiffi
/

p
=4Þ

h

þ
ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=4Þ coshðM=2Þ

i

� N3 M sinhðM=4Þ sinð
ffiffiffiffi
/

p
=4Þ

h

þ
ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=4Þ coshðM=4Þ

i

� N1

ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=4Þ

o. ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=2Þ

h i
;

N5 ¼ Rtq

ffiffiffiffi
/

p
sinð

ffiffiffiffi
/

p
=4Þ

n
� cosð

ffiffiffiffi
/

p
=4Þ

� N2 2M sinhðM=2Þ cosð
ffiffiffiffi
/

p
=4Þ

h

þ
ffiffiffiffi
/

p
sinð

ffiffiffiffi
/

p
=4Þ coshðM=2Þ

i

� N3 M sinhðM=4Þ cosð
ffiffiffiffi
/

p
=4Þ

h

þ
ffiffiffiffi
/

p
sinð

ffiffiffiffi
/

p
=4Þ coshðM=4Þ

i

� N1

ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=4Þ

o. ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=2Þ

h i
ð113Þ

for the isothermal–isoflux ðT1 � q2Þ case.
The corresponding temperature distribution solu-

tions for fthe case of heat absorption are obtained by

replacing / in Eq. (103) by �/ and solving subject Eqs.

(105)–(107). These solutions can be written as

h ¼ N 
1 þ N 

2 coshð2MgÞ þ N 
3 coshðMgÞ

þ N 
4 coshð

ffiffiffiffi
/

p
gÞ þ N 

5 sinhð
ffiffiffiffi
/

p
=4Þ; ð114Þ

where

N 
1 ¼ �N1; N2 ¼ �Brð48=M2Þ2 sech2ðM=4Þ

4M2 � /
;

N 
3 ¼ 2Brð48=M2Þ2 sechðM=4Þ

M2 � /

ð115Þ

and

N 
4 ¼ � ½N 

1 þ N 
2 coshðM=2Þ þ N 

3 coshðM=4Þ�
coshð

ffiffiffiffi
/

p
=4Þ

;

N 
5 ¼ Rt

2 sinhð
ffiffiffiffi
/

p
=4Þ

ð116Þ
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for the isothermal–isothermal ðT1 � T2Þ case

N 
4 ¼ Rqt

ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=4Þ

n
þ sinhð

ffiffiffiffi
/

p
=4Þ

� N 
2

ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=4Þ coshðM=2Þ

h

þ 2M sinhðM=2Þ sinhð
ffiffiffiffi
/

p
=4Þ

i

� N 
3

ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=4Þ coshðM=4Þ

h

þ M sinhðM=4Þ sinhð
ffiffiffiffi
/

p
=4Þ

i

� N 
1

ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=4Þ

o. ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=2Þ

h i
;

N 
5 ¼ Rqt

ffiffiffiffi
/

p
sinhð

ffiffiffiffi
/

p
=4Þ

n
� coshð

ffiffiffiffi
/

p
=4Þ

� N 
2

ffiffiffiffi
/

p
sinhð

ffiffiffiffi
/

p
=4Þ coshðM=2Þ

h

� 2M sinhðM=2Þ coshð
ffiffiffiffi
/

p
=4Þ

i

� N 
3

ffiffiffiffi
/

p
sinhð

ffiffiffiffi
/

p
=4Þ coshðM=4Þ

h

� M sinhðM=4Þ coshð
ffiffiffiffi
/

p
=4Þ

i

� N 
1

ffiffiffiffi
/

p
sinhð

ffiffiffiffi
/

p
=4Þ

o. ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=2Þ

h i
ð117Þ

for the isoflux–isothermal (q1 � T2) case

N 
4 ¼ Rtq

ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=4Þ

n
� sinhð

ffiffiffiffi
/

p
=4Þ

� N 
2

ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=4Þ coshðM=2Þ

h

þ 2M sinhðM=2Þ sinhð
ffiffiffiffi
/

p
=4Þ

i

� N 
3

ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=4Þ coshðM=4Þ

h

þ M sinhðM=4Þ sinhð
ffiffiffiffi
/

p
=4Þ

i

� N 
1

ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=4Þ

o. ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=2Þ

h i
;

N 
5 ¼

n
� Rtq

ffiffiffiffi
/

p
sinhð

ffiffiffiffi
/

p
=4Þ � coshð

ffiffiffiffi
/

p
=4Þ

� N 
2

h
�

ffiffiffiffi
/

p
sinhð

ffiffiffiffi
/

p
=4Þ coshðM=2Þ

þ 2M sinhðM=2Þ coshð
ffiffiffiffi
/

p
=4Þ

i

� N 
3

h
�

ffiffiffiffi
/

p
sinhð

ffiffiffiffi
/

p
=4Þ coshðM=4Þ

þ M sinhðM=4Þ coshð
ffiffiffiffi
/

p
=4Þ

i

þ N 
1

ffiffiffiffi
/

p
sinhð

ffiffiffiffi
/

p
=4Þ

o. ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=2Þ

h i

ð118Þ

for the isoflux–isothermal (T1 � q2) case.
The Nusslet numbers for the above wall heating sit-

uations can be written as:

Isothermal–Isothermal (T1 � T2) Walls:

Nu1 ¼ � 2MN2 sinhðM=2Þ �MN3 sinhðM=4Þ
þ N4

ffiffiffiffi
/

p
sinð

ffiffiffiffi
/

p
=4Þ þ N5

ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=4Þ;

Nu2 ¼ 2MN2 sinhðM=2Þ þMN3 sinhðM=4Þ
� N4

ffiffiffiffi
/

p
sinð

ffiffiffiffi
/

p
=4Þ þ N5

ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=4Þ:

ð119Þ
Isoflux–Isothermal (q1 � T2) walls:

Nu1 ¼ 1 N1

h.
þ N2 coshðM=2Þ þ N3 coshðM=4Þ

þ N4 cosð
ffiffiffiffi
/

p
=4Þ � N5 sinð

ffiffiffiffi
/

p
=4Þ

i
;

Nu2 ¼ 2MN2 sinhðM=2Þ þMN3 sinhðM=4Þ
� N4

ffiffiffiffi
/

p
sinð

ffiffiffiffi
/

p
=4Þ þ N5

ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=4Þ:

ð120Þ
Isothermal–Isoflux (T1 � q2) walls:

Nu1 ¼ � 2MN2 sinhðM=2Þ �MN3 sinhðM=4Þ
þ N4

ffiffiffiffi
/

p
sinð

ffiffiffiffi
/

p
=4Þ þ N5

ffiffiffiffi
/

p
cosð

ffiffiffiffi
/

p
=4Þ;

Nu2 ¼ 1 N1

h.
þ N2 coshðM=2Þ þ N3 coshðM=4Þ

þ N4 cosð
ffiffiffiffi
/

p
=4Þ þ N5 sinð

ffiffiffiffi
/

p
=4Þ

i
ð121Þ

for the heat generation case and

Isothermal–Isothermal (T1 � T2) walls:

Nu1 ¼ � 2MN 
2 sinhðM=2Þ �MN 

3 sinhðM=4Þ
� N 

4

ffiffiffiffi
/

p
sinhð

ffiffiffiffi
/

p
=4Þ þ N 

5

ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=4Þ;

Nu2 ¼ 2MN 
2 sinhðM=2Þ þMN 

3 sinhðM=4Þ
þ N 

4

ffiffiffiffi
/

p
sinhð

ffiffiffiffi
/

p
=4Þ þ N 

5

ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=4Þ:
ð122Þ

Isoflux–Isothermal (q1 � T2) walls:

Nu1 ¼ 1 N 
1

h.
þ N 

2 coshðM=2Þ þ N 
3 coshðM=4Þ

þ N 
4 coshð

ffiffiffiffi
/

p
=4Þ � N 

5 sinhð
ffiffiffiffi
/

p
=4Þ

i
;

Nu2 ¼ 2MN 
2 sinhðM=2Þ þMN 

3 sinhðM=4Þ
þ N 

4

ffiffiffiffi
/

p
sinhð

ffiffiffiffi
/

p
=4Þ þ N 

5

ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=4Þ:
ð123Þ

Isothermal–Isoflux (T1 � q2) walls:

Nu1 ¼ � 2MN 
2 sinhðM=2Þ �MN 

3 sinhðM=4Þ
� N 

4

ffiffiffiffi
/

p
sinhð

ffiffiffiffi
/

p
=4Þ þ N 

5

ffiffiffiffi
/

p
coshð

ffiffiffiffi
/

p
=4Þ;

Nu2 ¼ 1 N 
1

h.
þ N 

2 coshðM=2Þ þ N 
3 coshðM=4Þ

þ N 
4 cosð

ffiffiffiffi
/

p
=4Þ þ N 

5 sinð
ffiffiffiffi
/

p
=4Þ

i
ð124Þ
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for the heat absorption case.

It can be shown (at least numerically) that as both M

and / approach zero, the solutions for h given in Eqs.

(109) and (114) and the Nusselt number solutions given

in Eqs. (119) and (122) reduce to

h ¼ �192Brg4 þ 2Rtg þ 3Br
4

; ð125Þ

Nu1 ¼ 2ðRt þ 6BrÞ; Nu2 ¼ 2ðRt � 6BrÞ; ð126Þ

which are the same as reported by Cheng and Wu [8]

and Barletta [5].

Fig. 12 illustrates the influence of the Brinkman

number Br on the temperature profiles for the isother-

mal–isothermal case based on the analytical solutions

given by Eq. (109) for Rt ¼ 0:5 and Rt ¼ 1:0: It is clearly
seen that the linear temperature distribution associated

with Br ¼ 0 is no longer existing for the cases where

Br 6¼ 0. In addition, the thermal state of the fluid is

augmented owing the presence of both viscous and

magnetic dissipations (Br 6¼ 0) for the two different

asymmetic wall heat conditions (Rt ¼ 0:5 and Rt ¼ 1:0)
shown.

In Fig. 13, the effect of Brinkman number Br on the

temperature distribution in the channel for the case of

isoflux–isothermal wall conditions is reported for two

different values of the thermal ratio parameter Rqt. As in

the case of isothermal– isothermal walls shown in

Fig. 12, increasing the value of Br is seen to enhance the

temperature distribution in the channel. However, in

this case, the wall temperature of the left isoflux wall

also increases. It is also seen that higher temperature

distributions are obtained for higher values of Rqt.

Fig. 14 depicts the variations in the Nusselt number

at the left and right walls of the channel as a result of

changing Br for two different wall heating conditions.

For the two shown cases, it is observed that while the

Nusselt numbers at the left wall (Nu1) increase with in-

creasing values of Br, the Nusselt numbers at the right

walls (Nu2) show a decreasing trend with Br. It is in-

teresting to note that while Nu2 for the isothermal–iso-

thermal case decreases linearly with Br, Nu2 for the

isothermal–isoflux case shows a nonlinear decay with Br

approaching a constant value for large values of Br.

6.2. Hydromagnetic mixed convection flow in a channel

with heat generation and viscous and magnetic dissipa-

tions

The general Eq. (8) governing the above titled

problem does not possess an analytical solution.

Therefore, a numerical solution is required. For this

reason, the implicit, tri-diagonal finite-difference method

discussed by Blottner [6] is employed for this purpose.

Eq. (8) is converted into two second-order equations by

a change of variable such that Z ¼ U 00. The resulting

equations are then discretised using central-difference

quotients. A set of algebraic equations result which can

be solved with iterations to deal with the non-linearities

of the equations by the Thomas algorithm (see [6]). AFig. 12. Effects of Br on temperature profiles for ðT1 � T2Þ case.

Fig. 13. Effects of Br on temperature profiles for ðq1 � T2Þ case.

Fig. 14. Effects of Br on Nusselt numbers.
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uniform step size of 0.005 is employed to produce the

numerical results. The accuracy of the numerical solu-

tion is checked against the many analytical solutions

reported previously. Only Figs. 15 and 16 are chosen for

presentation in this section in order to display the effects

of both viscous dissipation and Joule heating on the

velocity and temperature profiles in the channel in the

presence of buoyancy effects. It is clear from these fig-

ures that, for a fixed value of Gr=Re, a larger amount of

flow accompanied with a higher thermal state are in-

duced in the channel owing the presence of both viscous

dissipation and Joule heating. In addition, the presence

of these effects is predicted to be much more pronounced

at larger values of Gr=Re.

7. Conclusion

This work focused on the laminar fully developed

mixed convective flow of an electrically conducting fluid

in a vertical channel in the presence of a magnetic field

and heat generation or absorption effects. Three different

combinations of thermal left–right wall conditions were

prescribed. These thermal left–right wall conditions were

isothermal–isothermal, isoflux–isothermal, and isother-

mal–isoflux conditions. Various analytical solutions for

the velocity and temperature profiles for different special

cases with the three wall heating conditions were ob-

tained. Also, the heat transfer aspects and the reversed

flow conditions were considered and analytical expres-

sions for the Nusselt numbers at the left and right walls

of the channel were derived. In addition, analytical so-

lutions for forced convection flow in a channel with both

viscous and magnetic dissipations were reported. Finally,

the general mixed, convection problem which includes

the effects of both viscous dissipation and Joule heating

was solved numerically by an implicit finite-difference

method. Comparisons with previously published work

were performed and found to be in excellent agreement.

Graphical results were displayed for selected situations

of wall heating conditions and proper conclusions were

obtained. It was found that no reversed flow occurs for

the case of symmetric channel wall temperatures while

reversal flow near the walls is assured for asymmetric

channel wall temperatures and mixed isoflux–isothermal

or isothermal–isoflux wall thermal conditions. The zone

of assured reversal flow was found to increase owing the

presence of either of the magnetic field or the heat gen-

eration effects or both.
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