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Abstract

The problem of hydromagnetic fully developed laminar mixed convection flow in a vertical channel with symmetric
and asymmetric wall heating conditions in the presence or absence of heat generation or absorption effects is consid-
ered. Through proper choice of dimensionless variables, the governing equations are developed and three types of
thermal boundary conditions are prescribed. These thermal boundary conditions are isothermal-isothermal, isoflux—
isothermal, and isothermal-isoflux for the left-right walls of the channel. Analytical solutions for the velocity and
temperature profiles for various special cases of the problem are reported. In addition, closed-form expressions for the
Nusselt numbers and reversal flow conditions at both the left and right channel walls are derived. The general problem
which includes the effects of both viscous dissipation and Joule heating is solved numerically by an implicit finite-
difference scheme. Favorable comparisons of special cases with previously published work are obtained. A selected set
of graphical results illustrating the effects of the various parameters involved in the problem including viscous and
magnetic dissipations on the velocity and temperature profiles as well as flow reversal situations and Nusselt numbers is

presented and discussed. © 2002 Published by Elsevier Science Ltd.

1. Introduction

Mixed convection flow in a vertical channel has
been the subject of many previous investigations due
its possible application in many industrial and engi-
neering processes. These include cooling of electronic
equipment, heating of the Trombe wall system, gas-
cooled nuclear reactors and others. Tao [17] analyzed
laminar fully developed mixed convection flow in a
vertical parallel-plate channel with uniform wall tem-
peratures. Aung and Worku [1,2] discussed the theory
of combined free and forced convection in a vertical
channel with flow reversal conditions for both devel-
oping and fully developed flows. Aung and Worku [2]

*Tel.: +965-571-2298; fax: +965-484-7131.
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kha).

assumed that the walls of the channel were having
asymmetric temperatures. The case of developing
mixed convection flow in ducts with asymmetric wall
heat fluxes was analyzed by the same authors [3]. A
comprehensive review of the literature dealing with
mixed convection in internal flow was reported by
Aung [4]. Cheng et al. [9], Hamadah and Wirtz [11]
and Ingham et al. [12] also reported on flow reversal
situations in mixed convection in a vertical channel for
different wall heating conditions. Kou and Lu [13]
analyzed mixed convection in a porous medium
channel and discussed the conditions for flow reversal
situations.

The use of electrically conducting fluids under the
influence of magnetic fields in various industries has
led to a renewed interest in investigating hydromag-
netic flow and heat transfer in different geoemetries.
For example, Sparrow and Cess [15] considered the
effect of a magnetic field on the free convection heat
transfer from a surface. Raptis and Kafoussias [14]
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Nomenclature
A constant pressure gradient (Pa m™)
By magnetic induction (tesla)
Br Brinkman number defined in Eq. (7)
¢ specific heat at constant pressure
(kg ' K™
D =2L, hydraulic diameter (m)
Gr Grashof number defined in Eq. (7)
hy, by heat transfer coefficients at left and right

walls, respectively (W m~2 K™')
g acceleration due to gravity (m s—2)
k thermal conductivity (W m~! K1)
L channel width (m)
M Hartmann number defined in Eq. (7)

Nuy,Nu,  Nusselt numbers defined by Egs. (69),
(73) or (78)

)4 pressure (Pa)

p = p + pgx, difference between the
pressure and the hydrostatic pressure (Pa)

Pr Prandtl number defined in Eq. (7)

q1,92 prescribed boundary heat fluxes per unit
area (W m2)

[N heat generation, or absorption, coefficient
(Wm™ K™

Re Reynolds number defined in Eq. (7)

R, = (I — T1)/AT, temperature difference
ratio

Ry = (T, — Ty) /AT, thermal ratio parameter

Ry = (T} — Tp) /AT, thermal ratio parameter

T temperature (K)

n,7T prescribed boundary temperatures (K)

T, reference ambient temperature, = (7,+
1) /2, (K) for isothermal walls

u dimensional velocity component in the
x-direction (m s~')

Uy = AD?/(48u), reference velocity (m s™!)

U dimensionless velocity component in the
x-direction

X streamwise coordinate (m)

y transverse coordinate (m)

Greek symbols

o =k/(pc), thermal diffusivity (m? s~!)

p thermal expansion coefficient (K™")

AT reference temperature difference (K)

n dimensionless transverse coordinate
defined in Eq. (7)

10) dimensionless heat generation or
absorption coefficient defined in Eq. (7)

0 dimensionless temperature defined by
Eq. (7)

dynamic viscosity (Pa s)

= u/p, kinematic viscosity (m? s~')
fluid density (kg m?)

fluid electrical conductivity (mho m~!)

Q™ ==

analyzed flow and heat transfer through a porous
medium bounded by an infinite vertical plate under
the action of a magnetic field. Garandet et al. [10]
discussed buoyancy driven convection in a rectangular
enclosure with a transverse magnetic field. Chamkha
[7] analyzed free convection effects on three-dimen-
sional flow over a vertical stretching surface in the
presence of a magnetic field.

The study of internal heat generation or absorption
in moving fluids is important in view of several phys-
ical problems such as those dealing with chemical re-
actions and those concerned with dissociating fluids
(see, for instance, [18,19]). Other investigations dealing
with internal heat generation or absorption can be
found in the works of Sparrow and Cess [16] and
Chamkha [7].

The aim of the present work is to extend studies
available in the literature and especially the work of
Barletta [5] on laminar fully developed mixed con-
vection in a vertical parallel-plate channel by including
internal heat generation or absorption and magnetic
field effects. This will be done for three types of left—
right walls thermal conditions. These conditions are

the isothermal-isothermal, isoflux—isothermal and the
isothermal-isoflux thermal wall conditions.

2. Governing equations

Consider steady laminar mixed convective flow in a
parallel-plate vertical channel in the presence of a
magnetic field and a heat source or sink. The vertical
plates are separated by a distance L and are maintained
at either constant temperature or constant heat flux (see
Fig. 1). Let x and y represent the vertical and horizontal
distances, respectively, with the origin being at the center
of the channel. Let the magnetic field be applied in the
horizontal direction normal to the flow direction. The
working fluid is assumed to be Newtonian, electrically
conducting, and heat generating or absorbing and its
properties are assumed constant except the density in the
body force term of the momentum equation. Also, it is
assumed that x-component of velocity is the only non-
zero component. Under the above assumptions and by
invoking the Boussinesq approximation, the governing
equations can be written as:
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Fig. 1. Problem schematics and coordinate system.
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where u and T are the x-component of velocity and
temperature, respectively, P = p + pgx is the difference
between the pressure and hydrostatic pressure. p, u, v, k
and c are the fluid density, dynamic viscosity, kinematic
viscosity, thermal conductivity and specific heat at
constant pressure, respectively. 5, g, g, By, and Q, are
the thermal expansion coefficient, gravitational acceler-
ation, fluid electrical conductivity, magnetic induction,
and the heat generation or absorption coefficient, re-
spectively. T is a reference ambient temperature. In the
proceeding sections, it will be necessary to distinguish
between heat generation cases and heat absorption cases
because a general solution in which Q, can be either
positive or negative experiences difficulties upon nu-
merical evaluation such as the evaluation of complex
numbers, etc. For this reason, the positive or negative
signs in front of the last term of Eq. (3) are used such
that the positive sign indicates heat generation and the
negative sign indicates heat absorption. In this way,
Oy > 0 for both situations.

Eq. (1) suggests that u will only be a function of the
horizontal distance y. Also for the three different wall
heating conditions of isothermal-isothermal, isoflux—
isothermal and isothermal-isoflux, a constant pressure
gradient (dP/dx = 4) is required for the compatibility
with Eq. (2). Taking these facts into consideration and
differentiating Eq. (2) with respect to x gives

or
= =0 )

Eq. (4) indicates that the temperature is also a function
of y only.

Combining the remaining terms of both Eqs. (2) and
(3) gives

v _ O'_B% % 1" %(T_B(z) QO ,Ulﬁ N2

! <qu:k)uq:k pvu:kav k(u)
UBﬁg 2
w0 (5)

where a prime denotes ordinary differentiation with re-
spect to y.

Four boundary conditions for u are needed to solve
Eq. (5). These are the two no-slip conditions at both
walls and the other two induced by the thermal
boundary conditions which can be obtained from eval-
uating Eq. (2) at each wall. Therefore, the boundary
conditions for the case of isothermal-isothermal
(Ty — T») walls can be written as

) a5
(L) -4 BOoT) o, (1) ©)

QNN )
2 u v u 2

Egs. (5) and (6) can be written in dimensionless form
by employing the dimensionless quantities given earlier
by Barletta [5]

y u T—Tp
=2 y=2L 9=
"=p 2o’ AT
ATD? B2 D
Gr=SPAD. o _Bopp g, D (7)
v u v
2 2
ue Mg QoD
B" = — B = — =
i B Tkar 97
(where uy = AD?/(48y) is a reference velocity, AT is a

reference temperature difference which is different for
different wall thermal boundary conditions, and D = 2L
is the hydraulic diameter) to yield

G
UY — (M2 F ¢)U" F M*PU —R—rBr(U’)2
e

Gr

——BrM*U* £ 48¢ =
28" U 8¢ =0, (8)
1 1

U(—Z) =0, U(Z) =0,
1 R, Gr

nl_ = :_4 oA

U( 4) 8+ 7 Re’ 9)

1 R, Gr
nf 2} — 48 -t 0
v (4) 8 2 Re’
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where a prime in Eq. (8) denotes ordinary differentiation
with respect to # and R, = (7> — 71)/AT is a thermal
ratio parameter for the isothermal-isothermal case.

As a consequence of Eqgs. (2), (3) and (8), the di-
mensionless temperature can, be determined from the
equation:

1 " 2

0= Gr/Re(48+U M-U). (10)
It is worth, noting here that for the case of isothermal
walls Ty = (T] +T2)/2 and AT = -1 if <1,
(asymmetric wall heating) or AT =v*/(cD*) if 1 =T
(symmetric wall heating). As a consequence of this,
R, = 0 for the symmetric wall heating case and R, =1
for the asymmetric wall heating case.

3. Analytical solutions

Various analytical solutions for special cases of the
problem described above are possible only in the ab-
sence of both viscous and magnetic dissipation terms.
These are reported for the following nine special cases:

Case 1. Hydromagnetic mixed convection flow in a
vertical channel with isothermal walls.

For this special case the viscous and magnetic dissi-
pations and the heat generation or absorption effect are
neglected (Br = 0 and ¢ = 0). Using this, Eq. (8) reduces
to

uv - MU =0. (11)

Solution of Eq. (11) subject to Egs. (9) can be shown to
yield

G o C
U= ]l712 sinh(Mn) + ﬁzz cosh(Mn) + Csn + Cq, (12)

where
R.Gr M M
Cy=- Re csch(z)7 C, = —48560h(z),
(13)
2R, Gr 48
=R “Tw

With U being known, the temperature distribution in
the channel can be found from Eq. (10). This can be
shown to be

0 = 2R, (14)

which is the solution reported earlier by Barletta [5].
Case 2. Mixed convection flow in a vertical channel
with isothermal walls in the presence of a heat source or
sink.
For the titled problem Br =0 and M = 0. For this
situation Eq. (8) reduces to

UY + ¢pU" = —48¢ (15)

for the case of heat generation and
UY — pU" = 48¢ (16)

for the case of heat absorption.

Without going into detail, it can be shown that the
solutions of Egs. (15) and (16) subject to Egs. (9) can,
respectively, be written as

. 2R, Gr 3
U:C5s1n(\/$;7)724n27%%e11+§, (17)
U:C65inh(\/$n)—24n2+%%’7+; (18)
where

_ R(Gr/Re _ RGr/Re (19)
T 2¢sin(v/a)  ° 2¢sinh(vVP/4)’

The corresponding temperature distributions for the
heat generation and heat absorption cases can, respec-
tively, be written as

~ o (/) (20)
= Gf‘;ie sinh(y/¢n). (21)

It can be shown that as ¢ — 0, the solutions for U and 0
approach those reported by Barletta [5].

Case 3. Hydromagnetic mixed convection flow in a
vertical channel with isothermal walls in the presence of
a heat source or sink.

For this special case, setting Br = 0 in Eq. (8) yields

UY — (M* — p)U" — M*¢U +48¢ =0 (22)
for the case of heat generation and
UY — (M* 4+ $)U" + M*pU — 48¢ =0 (23)

for the case of heat absorption.

Again, without going into detail, the solutions for the
velocity and temperature distributions (U and 6) in the
channel can be written as

U = C;sinh(Mn) + Cg cosh(M7n)
43

+ Cysin(y/¢n) + ek (24)
_ Gy(¢ + M?)sin(v/¢n)
0= Gr/Re (25)
for the heat generation case and
U = Csinh(Mn) + Cs cosh(Mn)
. 48
+ Cyy sinh(y/on) + w2 (26)
— M) si
0= _ Cii (¢ — M?)sinh(v/¢n) (27)

Gr/Re '
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where
C R.Gr/Re

77 2(M? + ¢)sinh(M/4)’

48

Gy = *Wwﬂfy (28)
Co R.Gr/Re

DT 2M o+ ¢)sin(v§/4)
Cro — RGr/Re

07 T2 (M2 = ¢)sinh(M /4)° 29)
c —R.Gr/Re

11

" 2(¢ — M?)sinh(v/g/4).

Isoflux—isothermal walls (g, — T5)

For this situation, the thermal boundary conditions
for the channel walls can be written in the dimensional
form as

dr

g =—k—

O , T(L)2) =T (30)

—L/2

The dimensionless form of Egs. (30) can be obtained
by using Eqs. (7) with AT = g, D/k to give

e

where Ry, = (7> — Tp)) /AT is the thermal ratio parameter
for the isoflux—isothermal case.

Other than the no-slip conditions at the channel
walls, two more boundary conditions in terms of u are
needed to solve Eq. (8) for this case. These are induced
by the conditions given in Egs. (30) and are obtained
from Eq. (2) as follows:

Differentiating Eq. (2) with respect to y with
dP/dx = A gives

BZ

i~ By B (32)
u v

Eq. (32) is non-dimensionalized by using Egs. (7) to

give
Gr

U"—MU +—.0 =0. 33
+ 20 (33)
Evaluating Eq. (33) at the left walls (n = —1/4) yields
" 2 U Gr
U"(-1/4) —M U(—1/4):R—. (34)
e

The other boundary condition at the right wall can be
shown to be the same as that given for the isothermal—
isothermal case with R, replaced by Ry such that

1(1/4) = —ag — Rat GT
U"(1/4) = —48 > Re’ (35)

Case 4. Hydromagnetic mixed convection flow in a
vertical channel with isoflux—isothermal walls.

In the absence of both viscous and magnetic dissi-
pations (Br =0) and heat generation or absorption
(¢ = 0), the analytical solutions for the velocity and
temperature distributions are obtained by solving of
Eqgs. (8) and (10) subject to Egs. (34) and (35) and the
no-slip conditions at the wall. These solutions can be
shown to be

Cp . ¢
U =—2 sinh(Mn) + Vl; cosh(Mn) + Ciun + Cis,  (36)

M2
MZ
0= m [C14l1 + C15], (37)
where
_16Gr M 48+ Gr/Re(1/4+Ry)
G2 = 4 ReCSCh( 4 )’ Cia =~ cosh(M /4) ’
Gr 48 + Gr/Re(1/4+ Ry)
Cy= TR Cis= >
eM M
(38)

Case 5. Mixed convection flow in a vertical channel
with isoflux—isothermal walls in the presence of a heat
source or sink.

The solutions for the velocity and temperature dis-
tributions for this case are obtained in a similar way as
its isothermal-isothermal counterpart but with the use
of Egs. (34) and (35) instead of the last two conditions of
Egs. (9). The velocity and temperature distributions can
be shown to be

U= C16 sin(\/an) + C17 COS(\/E}’]) — 241’[2 + Clgi/]

+ Co, (39)
0= # [Cis sin(/dn) + Ciy cos(/n)), (40)
where

_ Gr/Re[cos(v/§/4) + V§Ry sin(V/§/4)]

Cis = ¢3/2 COS(\/$/2) ’
Crn = Gr/Re[sin(v/¢/4) + Ry cos(v/$/4)]
¢*? cos(v/$/2) 7 (41)

Cis = —4Cigsin(v/¢/4),
C19 = % — C|7 COS(\/$/4)

for the heat generation case and

U= C20 smh(ﬁn) + C21 COSh(\/&Eﬂ) — 24112
+ szi’] + C23, (42)

0= #‘ie [Cyo sinh(y/n) + Car cosh(y/en)), (43)
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where
cr Gr/Re[cosh(v/$/4) — Ry/¢ sinh(v/¢/4)]
» ¢’ cosh(//2) ’
¢ _ =Gr/Relsinh(v/@/4) + Ry/@ cosh(v/§/4)]
. ¢** cosh(v/$/2) ’
Cy = —4Cy sinh(v/¢/4), Cy = % — Cy cosh(y/¢/4)

. (44)
for the heat absorption case.

Case 6. Hydromagnetic mixed convection flow in a
vertical channel with isoflux-isothermal walls in the
presence of a heat source or sink.

This problem is the isoflux—isothermal counterpart of
the problem for isothermal-isothermal walls. Therefore,
the method of solution is the same except the boundary
conditions (34) and (35) are used instead of the last
conditions of Egs. (9). The general solutions for U and 6
associated, with this problem can be shown to be

U = Cy sinh(Mn) + Cys cosh(Mn)

+ Cag sin(/dn) + Cxy cos(v/¢n) + ;‘782, (45)

= ((/Z;_/R [Cas sin(v/¢n) + Ca cos(v/on)], (46)
where
Cos = — C26 sm(\/$/4)

*7 T sinh(M/4)
Cor = —48/M? — Cy;cos(+/§/4)

» cosh(M /4) ’ @)
. _ ~Gr/RelRyrv/Gsin(v/§/4) + cos(v//4)]

8 VM2 + ¢) cos(v$/2) ’
Cor — Gr/Re[Ry\/P cos(v/§/4) + sin(y//4)]

7 VM + §) cos(V/2)
for the heat generation case and
U :ng s1nh(M;1) + C29 COSh(Mﬂ)

+ Cyo sinh(y/¢n) + Cs; cosh(y/¢n) ;:182, (48)

9:%[C3osmh (v/n) + Cs cosh(y/dn)],
where (49)
Con — — C30 51nh(\/$/4)

¥ sinh(M/4)
Con — —48/M? — C3; cosh(v/¢/4)

» cosh(M/4) ’ (50)
Con = Gr/Re[cosh(y/$/4) — Ry/P sinh(v/p/4)]

. Vo — M) cosh(v//2) ’
Co — —Gr/Re[sinh(y/§/4) + Ry/P cosh(v/§/4)]

Vé(¢ — M?)cosh(V$/2)

for the heat absorption case.

Isothermal-isoflux walls (T\ — q,)
The dimensional form of the thermal boundary
conditions for this case can be written as
dr

T(-L)2) =T, kS 51
(=L/2)=T, ¢ = a |, (51)

where ¢, is a constant. Egs. (51) can be made dimen-
sionless by using Eqs. (7) with AT = ¢,D/k. This can be
shown to give

0(=1/4) =Ry, 0(1/4)=—1, (52)

where R = (T — Tp)) /AT is the thermal ratio parameter
for the isothermal-isoflux case.

Similar to the procedure done in the previous section
on isoflux—isothermal walls, the dimensionless form of
the boundary conditions obtained from using Eq. (2)
and applying Eq. (52) can be written as

Gr

U"(~1/4) = 48 — R,

Gr (33)

U"(1/4) - M*U'(1/4) = —.
e

Case 7. Hydromagnetic mixed convection flow in a
vertical channel with isothermal-isoflux walls.

For the above titled problem with Br =0 and ¢ =0,
the velocity and temperature distributions in the vertical

channel can be shown to be
U = &2 sinh(wn) + E2 cosh(mn) + € C 54
=572 Sinh(Mn) + - cosh(Mn) + Caan + Css, - (54)

1

= Gr/Re [M?(Csyn + Css) — 48], (55)
where
1 Gr M
Cy = 1 ECSCh(Z)’
Con — —48 — Gr/Re(Rq — 1/4)
B cosh (M /4) ’ (56)
Cu — Gr
N WVEE
48 + Gr/Re(Ryqy — 1/4)
Csy5 = e .

Case 8. Mixed convection flow in a vertical channel
with isothermal-isoflux walls in the presence of a heat
source or sink.

In the absence of the magnetic field (M = 0) and both
of the viscous and magnetic dissipations, solution of
Egs. (8) and (10) subject to Egs. (53) and the first two
conditions of Egs. (9) yields

U=0GCs sin(\/%v) + Gy COS(\/E’]) — 24n” + Cysn + Co,

(57)

=% /R [Cs6 sin(v/dn) + Cx7 cos(+/dn)], (58)



A.J. Chamkha | International Journal of Heat and Mass Transfer 45 (2002) 2509-2525 2515

where
Coo= — Gr/Re[cos(v$/4) — RqV¢sin(v/$/4)]
» ¢ cos(v/$/2) '
Co— Gr/Re[sin(v/¢/4) — Rig/ P cos(v/¢/4)]
' ¢ cos(v//4) T (59)

Css = —4Cyqsin(\/¢/4),
Cy = % — Cyy cos(\/a/4)

for the heat generation case and

U = Cyosinh(y/¢n) + Cyy cosh(y/dn) — 241

+ Cpn + Cy3, (60)
=G /R [Cyo sinh(y/dn) + Cay cosh(r/dn)], (61)
where

Gr/Relcosh(v/¢/4) + Riq /¢ sinh(\//4)]
¢ cosh(v//2) ’

Gr/Re[sinh(v/$/4) — Riy/P cosh(v/$/4)]
¢ cosh(v/$/2) T(62)

C42 = *4C4() Slnh(\/a/“')v

C43 = % — C4| COSh(\/a/“-)

Cy =

Cy =

for the heat absorption case.

Case 9. Hydromagnetic mixed convection flow in a
vertical channel with isothermal-isoflux walls in the
presence of a heat source or sink.

The analytical solutions for the velocity and tem-
perature profiles within the vertical channel for this case
can be shown to be

U =Cyy sinh(Mn) + Cys cosh(Mn)

+ C45 Sll’l(\/afl) + C47 COS(\/E") + W? (63)
— (qz;—/R [Cys sin(y/dn) + Ca7 cos(v/n)], (64)
where
B sin(v/¢/4)
Caa = =Cao sinh(M/4)’
Coe — —48/M? — Cyrcos(v/p/4)
®o cosh(M /4) ’ (65)
co —Gr/Relcos(v/$/4) — Rig/ P sin(y/$/4)]
“ VEOP+ Beos(VE2)
Co —Gr/Relsin(v/§/4) — R/ P cos(v/$/4)]
a VEOL + §)cos(VF/2)

for the heat generation case and

U =Cyg sinh(Mn) + Cy9 cosh(Mn)

+ C5() smh(\/%y) + C51 COSh(\/EVI) + :782’ (66)
0 :%[Cﬁ) sinh \/vn ) + Cs; cosh \/'11
(67)
Co e sinh(y/¢/4)
® T Sinh(M/4)
Co —48/M? — Cs; cosh(v/¢/4)
9 cosh(M /4) ' (68)
Cao = Gr/Re[cosh(y/}/4) + Riq\/P sinh(v/$/4)]
’ V(d — M?) cosh(v/§/2) ’
o — Gr/Re[sinh(\/$/4) — Rig/P cosh(v/§/4)]

Vé(§ = M?)cosh(v/§/2)

for the heat absorption case.

4. Heat transfer aspects

The Nusselt numbers at each of the channel walls are
important physical characteristics. These can be defined
for the three different thermal boundary conditions
considered in the present work as follows:

4.1. Isothermal-isothermal (T; — T;) walls
mD D dT !
N == AT dy |, Y
h D D dT (69)
2 /
=0(1/4
N =27 =37 & e (1/4),

where a prime denotes differentiation with respect to # and
Nu; and Nu, are the Nusselt numbers at the left and right
walls, respectively. i and &, are the heat transfer coeffi-
cient evaluated at the left and right walls, respectively.
Application of Egs. (69) for case 3 gives

Nuy = Nuy = R‘ﬁ cot(y/p/4) (70)
for the heat generation case and
Nuy = Nuy = Rtﬁ coth(~y/¢/4) (71)

for the heat absorption case.

It can easily be shown by using the fact that the limit
of xcot(x) or (xcoth(x)) as x — 0 is equal to unity that
in the absence of heat generation or absorption, the
limits of Egs. (70) and (71) as ¢ — 0 yield

Nu1 = Nuz = 2Rt7 (72)
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which is consistent with the result reported by Barletta

[5].

4.2. Isoflux—isothermal (q; — T) walls
th _ Dql _ 1
kKT -T) 0,

_mD D (dT\
Nuz == _AT(dy> =0

Nu1 =
(73)

where the quantities with subscripts 1 and 2 are under-
stood to be evaluated at the left (n = —1/4) and right
(n = 1/4) walls, respectively.

For the general case 6, Nu; and Nu, are given by

B Gr/Re
N =16 +M2>[c27 cos(v/5/4)— Cusin(v/a) Y
Nuy = ﬁ((ﬁ + M Cz cos(v/d/4) — Cysin(\/¢/4)]
~ Gr/Re

(75)

for the heat generation case and

N — — Gr/Re

' (¢ — M2)[—C sinh(v/@/4) + Cx cosh(v//4)]

(76)

Nuy = %[C}O cosh \/7/4

+ C3; sinh \/5/4)] (77)

for the heat absorption case.

4.3. Isothermal-isoflux (T;

_mD D (dT\
=i (), -

Nu _MmD__Dg _ 1
Tk kD-T) 6

— q2) walls

(78)

Employing Egs. (78) for the general case 9 yields the
following Nusselt numbers:

Nuy = % [Cas cOs(\//4) + Carsin(y/d/4)],

(79)

Gr/Re
(¢ + M?)[Cys sin(v//4) + Cyy cos(v//4)]

for the heat generation case and

% [Cso cosh(v//4)

— Cs; sinh(y/¢/4)], (81)

Nu1:—

Gr/Re
(¢ — M?)[Cso sinh(v/§/4) + Cs; cosh(v/¢/4)]
(82)

Nuzz—

for the heat absorption case.

5. Reversed flow conditions

Depending on the value of the mixed convection
parameter Gr/Re and the wall thermal boundary con-
ditions, a flow reversal condition may occur. It is ben-
eficial to understand when this situation occurs and
determine a reversed flow zone associated with each of
the problems discussed earlier. The occurrence of a re-
versed flow condition is ensured when the slopes of the
velocity profile at the walls have the same sign. That is

[U'(=1/4)[U'(1/4)] > 0. (83)

The critical condition for flow reversal at the walls oc-
curs when the wall slopes vanish such that

U'(—1/4) =0, U'(1/4) =0. (84)

Therefore, the two lines given by Eqgs. (84) constitute the
borders of the reversed flow region.

The conditions for reversed flow are found below for
the three general cases 3, 6 and 9. The other problems
discussed earlier represent special cases of these three
general ones.

5.1. Case 3

For this case, the velocity profile, is given by Eq. (24)
for the heat generation case and by Eq. (26) for the heat
absorption case. Differentiating U with respect to 7,
evaluating the result at both n = —1/4 and y = 1/4, and
then solving for the mixed convection parameter Gr/Re
produce the borders of the reversed flow regions. These
can be shown to be

(g) _ CsM sinh(M /4) (85)
Re ), MC;cosh(M]4) + /C; cos(v/G/4)’

Gr Gr

2y (2 86
(Re)z (Re)l7 (86)
where the subscripts 1 and 2 correspond to the left

(n = —1/4) and right (n = 1/4) walls, respectively, for
the heat generation, case and

Gr\ _ CsM sinh(M /4)
(R_e)l = MCy cosh(M [4) + /GC, cosh(/§/4)’
(87)

(k)= (), ®



A.J. Chamkha | International Journal of Heat and Mass Transfer 45 (2002) 2509-2525 2517

for the heat absorption case. In Egs. (85)-(88), the
constants C;, Cs, C;, and Cj, are given by

x _ Ry
G == 2(M? 4 ¢)sinh(M /4)’
’ R
= 2(M? + ¢)sin(v/§/4)’ (89)
. R,
Co =" 2(M? — ¢)sinh(M/4)’
R

sk

€= 2(M? — ¢)sinh(v/$/4)

It should be noted that, with some involved mathemat-
ical manipulation, the limits of Egs. (85)—(88) as both of
M and ¢ approach zero can be shown to lead to
(Gr/Re), = —(Gr/Re), = —288/R,. Then, for R, =1
(asymmetric heating) (Gr/Re), = —(Gr/Re), = —288
which is the same result reported by Barletta [5].

5.2. Case 6

The reversed flow conditions for this case are ob-
tained by the same way as done for case 3. Without
going into details the mixed convection parameter for
these conditions can be shown to be

(%) = —48/M tanh(M /4) /[C3,M cosh(M /4)

+ C3,M tanh(M /4) cos(\/¢/4)
+ Ci6/ P cos(v//4)
+ i/ $sin(y//4)], (90)

(%) = 48/M tanh(M /4)/[C;,M cosh(M /4)

— C5,M tanh(M /4) COS(\/&/“)

T Cio/Peos(v/B/4)

— Cp/Psin(V/§/4)], (1)
where

o —Gsin(V9/4)
27 sinh(M/4)

—Ry /P sin(y/§/4) — cos(v/p/4)

G =T R0r + $)eos (VD) .
o _ Rav/Beos(/4) + sin(V/4)
7 V(M2 + ¢) cos(v//2)
for the heat generation case and
(%) = —48/M tanh(M /4)/|C5sM cosh(M /4)
+ Ci,M tanh(M /4) cosh(v/$/4)
+CiV P cosh(\/$/4)
— C3\/psinh(/9/4)], (93)

(%) = 48/M tanh(M /4)/[C5sM cosh(M /4)

— C},M tanh(M /4) cosh(+/$/4)
+ Ciyr/ P cosh(y/¢/4)
+Ci/§sinh(V/h/4)], (94)

where
. —Cysin(V/4)
27 sinh(M/4)
oo _ 0sh(v§/4) — Ryv/sinh(v/§/4) (95)
Y Ve —M)cosh(VP/2)
—sinh(y/@/4) — Ryev/ cosh (/¢ /4)
V(¢ — M?)cosh(v/$/2)

for the heat absorption case.

koo
C31 -

5.3. Case 9

The expressions for the mixed convection parameter
for which reversed flow conditions near the walls exist
can be shown for this case to be

(1%)1 — —a8/M tanh(11/4) /[ 3,1 cosh(a/4)

+ Ci,M tanh(M /4) cos(r/d/4)
+ CigV/beos(v/§/4)
+ Cin/Psin(v/8/4) . (96)

<9> — 48/M tanh(M /4) / [c;4M cosh(M /4)

Re /,
— C},M tanh(M /4) cos(~\/¢/4)
+ Cie\/ b cos(v//4)

~ CpV/gsin(V//4)]. (97)
where
. . sin(v/$/4)
C44 = _C46mv
= —lcos(v/P/4) — R/ P sin(//4)] (98)
. VO(M? + ¢) cos(v//2) 7
o _ ISn(/B/4) ~ RovBeos(vF/4)
Y V(M2 + ¢) cos(v/$/2)

for the heat generation case and

(1%)1 = —48/M tanh(M/4)/ [ijgMcosh(M/4)

+ C:,M tanh(M /4) cosh(~/¢/4)
+ C5, ¢cosh(\/$/4)
— Cy/sinh(V/§/4)] (99)
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(%)2 = 48/M tanh(M /4) / [nggM cosh(M/4)

— C!,M tanh(M /4) cosh(~/$/4)
+ Ciy\/pcosh(y/p/4)
+C ¢sinh(\/$/4)], (100)

o SR
a8 0 sinh(M /4)
_cosh(y/$/4) + Rqv/P sinh(/¢ /4)
V(¢ —M?)cosh(v/2)
= sinh(v/¢/4) — R/ ¢ cosh(v/d/4)
! V(¢ — M?)cosh(v/$/2)

for the heat absorption case.

Cso (101)

6. Selected graphical results

Fig. 2 displays typical velocity profiles U in a vertical
channel with asymmetric (R, = 1.0) isothermal-isother-
mal wall heating conditions for different values of the
mixed convection parameter Gr/Re. For a vanishing
value of Gr/Re, the usual symmetric Hagen—Poiseuille
velocity profile is obtained. For an upward flow, in-
creases in the value of Gr/Re have the tendency to in-
crease the momentum of the flow close to the hot right
wall causing the velocity profile to become asymmetric.
As mentioned before, it is expected that beyond a critical
value of Gr/Re, a flow, reversal condition near the cold
left wall occurs and that this phenomenon increases
further as Gr/Re increases. Similarly, for a downward
flow, the induced flow increases close to the cold wall
with the reversed flow phenomenon occurring close to
the hot wall. The values of Gr/Re=213 and
Gr/Re = —213 are obtained from Egs. (85) and (86),
respectively, and they represent the positive and negative
critical values of Gr/Re. That is, for Gr/Re > 213 a re-
versed flow occurs close to the cold wall and for
Gr/Re < —213 a reversed flow takes place near the hot
wall. These behaviors are clearly depicted in Fig. 2.

Fig. 3 presents representative velocity profiles U in a
vertical channel with asymmetric isothermal-isothermal
wall conditions for various values of the Hartmann
number M and two chosen values of the mixed con-
vection parameters Gr/Re. The chosen values of
Gr/Re = 288 and Gr/Re = —288 represent the critical
conditions for flow reversal at the left and right walls,
respectively, in the absence of the magnetic and heat
generation or absorption effects. That is, any value of
Gr/Re > 288 results in reversed flow near the left wall
and any value of Gr/Re < —288 produces flow reversal
at the right wall. This figure serves dual purposes. It

Gr/Re=-400

— Gr/Re=288
~= Gr/Re=-288

-0.5
025 02 015 -01 005 00 0.05 0.1 0.15 02 025
n

Fig. 3. Effects of M on velocity profiles for (7} — 7») case.

shows the effect of the magnetic field on the fluid flow in
the channel and its influence on the flow reversal con-
ditions. Application of a transverse magnetic field to an
electrically conducting fluid gives rise to the magnetic
Lorentz force which acts in the direction opposite to that
of the fluid causing it to slow down. This drag-like force
increases as the strength of the magnetic field (repre-
sented by Hartmann number M) increases producing
further reductions in the fluid velocity. For the buoy-
ancy aiding flow case where Gr/Re = 288, increasing the
Hartmann number reduces the fluid adjacent to the cold
left wall causing a flow reversal condition there. This
reversed flow phenomenon increases as the strength of
the magnetic field increases. For the buoyancy opposing
flow case where Gr/Re = —288, the same phenomenon
of reversed flow occurs but close to the hot right wall.
Figs. 4 and 5 illustrate the influence of both the
Hartmann number M and the heat generation or ab-
sorption coefficient ¢ on the velocity profiles in a vertical
channel with isoflux-isothermal wall conditions, respec-
tively, In each of these figures, two conditions of thermal
buoyancy and thermal ratio parameters (R, = —0.5,0.5)
are considered. For a given value of Ry, the corresponding
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0.5

~~ Gr/Re=-57.6, R,=0.5
-~ Gr/Re=144, R =-0.5

-025 02 015 01 005 00 005 0.1 015 02 025

Fig. 4. Effects of M on velocity profiles for (¢, — 7») case.

— GifRe=-57.6,R,=0.5
— Gr/Re=144, R,=-0.5

0.1 -
-0.25 02 -0.15 -0.1 -0.05 0.0 0.05 0.1 0.15 02 0.25
n

Fig. 5. Effects of ¢ on velocity profiles for (¢; — 73) case.

critical values of Gr/Re are obtained from the analyti-
cal solutions for reversed flow conditions associated
with the isoflux—isothermal wall conditions reported in
Egs. (90)—(95). Similar to Fig. 3, Fig. 4 shows that the
effect of increasing the value of M produces reduced flow
in the channel and reversed flow near the left wall with
constant heat flux for Ry, = 0.5 and close to the isother-
mal right wall for R = —0.5. In Fig. 5, it is seen that heat
generation (¢ > 0) reduces the flow in the channel while
heat absorption, (¢ < 0) increases the fluid velocity in the
channel for the two considered values of the thermal ratio
parameter Ry,. In addition, it is predicted that a reversed
flow condition occurs close to the left wall for
Gr/Re = —57.6 and Ry =0.5 with heat generation
(¢ = 1.0) and close to the right wall for Ge/Re = 144 and
Ry = —0.5 with ¢ = 3.0. The region of reversed flow in-
creases as the value of ¢ increases for both cases.

Fig. 6 displays the influence of ¢ on the temperature
profiles in a vertical channel with isoflux—isothermal
walls for both Ry = 0.5 and Ry = —0.5. It is seen that
the temperature at the wall with constant heat flux de-
creases as the heat generation or absorption coefficient ¢
increases for both values of Ry considered. However, the

$=3.0

06

04|

—R=05
02 —R=05

$=-3.0,0,3.0

025 -2 -0I15 -01 005 00 005 0.1 015 02 025

Fig. 6. Effects of ¢ on temperature profiles for (¢; — 7») case.

wall temperature is more influenced for the case of
Rq = —0.5 than for the case of Ry = 0.5.

Fig. 7 depicts the variations in the velocity profiles U
in a vertical channel with isothermal-isoflux wall con-
ditions as a result of changing M or ¢ for a thermal ratio
parameter Rq = 0.5 and a mixed convection parameter
Gr/Re = —144. This figure predicts the same behaviors
as those observed in Figs. 4 and 5 for the isoflux—iso-
thermal case. That is, owing the presence of either of the
magnetic field or the heat generation effects, the fluid
velocity in the channel decreases and reversed flow oc-
curs close to the isothermal walls.

In Fig. 8, the value of Gr/Re required for flow reversal
close to the cold left wall for the isothermal-isothermal
walls case as a function of R, for different values of M and
¢ is plotted. For R, =0 (symmetric isothermal wall
heating) no reversed flow occurs. However, R, # 0, the
velocity profiles in the channel become asymmetric and
flow reversal close to the cold wall may occur. The degree
of asymmetry increases as R, increases and the flow re-
versal critical value of Gr/Re decreases inversely with R,
as shown previously. Again, the effects of the magnetic
field and heat generation produce reversed flow near the

0.6

=2,
Br=0.0 $=20

Gr/Re=-144
R=0.5

0.5

0.4]

0.3
=]
0.2

025 -02 015 -01 005 00 005 0.1 015 02 025
n

Fig. 7. Effects of M and ¢ on velocity profiles for (7} — g,)
case.
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Fig. 8. Effects of M and ¢ on reversed flow for (7} — T») case.

cold wall in the neighborhood of the critical value of
Gr/Re. Therefore, the critical value of Gr/Re decreases as
either M or ¢ increases for all values of R,. These be-
haviors are apparent from Fig. 8. It is also noted that the
influence of M on the critical value of Gr/Re is stronger
than that of ¢ especially for the isothermal walls case. As
predicted by Eq. (86), the critical value of Gr/Re for re-
versed flow close to the hot right wall is exactly the
negative of the critical value of Gr/Re associated with the
cold wall for all values of M, R, and ¢.

The effects of the heat generation or absorption, co-
efficient ¢ and the thermal ratio parameters (R, Ry and
Ry) on the Nusselt number for the isothermal-isother-
mal, isoflux—isothermal and the isothermal-isoflux cases
are presented in Figs. 9 through 11, respectively. For the
isothermal-isothermal case, it is predicted that the
Nusselt number at the cold wall (or the hot wall as pre-
dicted by Egs. (70) and (71)) increases with increases in
the values of R, and decreases as the value of ¢ increases
as shown in Fig. 9. However, for the isoflux—isothermal
and isothermal-isoflux cases, the Nusselt numbers at the
isothermal walls are uniform for the case of ¢ = 0 for all
values of Ry and Ry while they decrease or increase with

2.0

$=-5.0,0,5.0

0.5

0.0 0.1 02 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 9. Effects of R, and ¢ on Nusselt number.

1

$=-3.0

4
0 08 06 04 02 00 02 04 06 08 10
R
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Fig. 10. Effects of Ry and ¢ on Nusselt number.
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=0

Nu,

$=3.0

Br=0
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Fig. 11. Effects of R and ¢ on Nusselt number.

Ry and R depending on the value of ¢ # 0. For ex-
ample, the Nusselt number at the right wall (Nu,) for the
isoflux—isothermal case decreases with Ry for heat gen-
eration (¢ > 0) while it increases with Ry when heat
absorption effects (¢ < 0) are present. The opposite effect
is predicted for the Nusselt number at the left wall (Vi)
for the isothermal-isoflux case for which (Nu;) increases
with Ry for ¢ > 0 and decreases with R,q for ¢ < 0. In
addition, the values of Nu, (for the case of isoflux-iso-
thermal case) and Nu; (for the case of isothermal-isoflux
case) are the same at the intersection, points when
Ry = —0.25 and Ry = 0.25 for all values of ¢ # 0. It is
observed that the influence of heat generation, (¢ = 3.0)
on both, Nu, and Nu; for both cases is more pronounced
than that of the corresponding heat absorption value
¢ = 3.0. These facts are apparent from Figs. 10 and 11.

6.1. Analytical solutions for forced convection in a channel
with viscous dissipation and Joule heating

In this section, closed-form solutions for the velocity
and temperature profiles as well as the Nusselt numbers
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are obtained when both viscous dissipation and Joule
heating are present and buoyancy effects are absent. For
this situation the following equations and boundary
conditions hold:

U'—M*U+48 =0, (102)
0" + ¢0 + Br(U')* + BrM*U* = 0, (103)
U(-1/4)=U(1/4) =0, (104)
0(=1/4) = —R//2,

0(1/4) =R,/2 for (T} — T») case, (105)
0'(=1/4) = -1,

0(1/4) =Ry for (q1 — T») case, (106)
0(—1/4) = =Ry,

0'(1/4) = —1 for (T; — ¢;) case. (107)

Without going into detail, it can be shown that the
solutions for U and 0 for the case of heat generation
(¢ > 0) can be written as

U = (48/M*)[1 — sech(M/4) cosh(Mn)], (108)
0 = Ny + Ny cosh(2Mn) + N; cosh(Mn)
+ Ny cos(VOn) + Nssin(v/¢n), (109)
where
Br(48/M?)’
L
Ny — 7Br(48/]\;[;}z s—ic:;z(M/4) ’ (110)
Ny — 2Br(48/M?)* sech(M /4)
M+ ¢
and
Ny= [Ny + N> cosh(M/2) 4+ N5 cosh(M /4)] 7
N cos(v/d/4) un
2sin(v/¢/4)

for the isothermal-isothermal (7; — T3) case;
Ny = { R/ cos(v/@/4) +sin(/$/4)

— N[/ cos(v/#/4) cosh(M2)

+2M sin(\/$/4) sinh(M/Z)]

— N [ﬂ cos(v/p/4) cosh(M /4)

+ Msin(v/$/4) sinh(M/4)]

— Niv/Beos(v/6/4)} [ [V/Beos(v//2)].

Ns ={ Ry /$sin(v//4) + cos(v//4)
-N [2M sinh(M/2) cos(v//4)
+V/@sin(+//4) cosh(M/2)]
N [M sinh(M/4) cos(v/$/4)
+ v/ sin(y/§/4) cosh (M /4)]
_N \/Esin(\/&/4)}/ [ - \/5005(\/5/2)}

(112)

for the isoflux—isothermal (g, — T3) case;

Ny = {Rqv/§ cos(\//4) = sin(\/$/4)
N {2M sinh(M/2) sin(y/¢/4)
+V/dcos(v/§/4) cosh(M2)]
-N {M sinh(M /4) sin(y/¢/4)
+ v/ cos(\//4) cosh(M/4)]
—NivGeos(v/#/4)} [ [Vbeos(v/$/2)].

Ns = {Rqv/§sin(\//4) — cos(/$/4)
N [2M sinh(M/2) cos(v/$/4)
+ v/ sin(y/§/4) cosh(M2)]
— N[ M sinh(M/4) cos(v//4)
+ v/ sin(y/§/4) cosh(M/4)]
~NiVgeos(Va/4) )/ [Vaeos(Vo/2)]  (113)

for the isothermal-isoflux (7, — ¢;) case.

The corresponding temperature distribution solu-
tions for fthe case of heat absorption are obtained by
replacing ¢ in Eq. (103) by —¢ and solving subject Eqs.
(105)—(107). These solutions can be written as

6 = N + N, cosh(2Mn) + Ny cosh(Mn)
+ Nj cosh(y/¢n) + N: sinh(v/¢/4), (114)

where
Br(48/M?)* sech® (M /4)
aM? — ¢ '
. 2Br(48/M?)*sech(M/4)
Ni = =g

N =-Ni, N,=-—
(115)

N [N} + N5 cosh(M /2) + N; cosh(M /4)]
£ cosh(y/¢/4) ’ (116)

% t

2sinh(v/¢/4)
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for the isothermal-isothermal (T; — T3) case
N, = {th ¢ cosh(y/$/4) + sinh(1/$/4)

— N3 [\/@cosh(\//4) cosh(M2)

+2M sinh(M/2) sinh(y/$/4)]

— N3 [/$cosh(v/$/4) cosh(M/4)

+ M sinh(M/4) sinh(\/$ /4)]

— Niv/geosh(v/a/4)} /[ eosh(v/§/2)],
N: = {th ¢ sinh(\/$/4) — cosh(/$/4)

— N3 [/ sinh(y/$/4) cosh(M/2)

~ 2M sinh(M/2) cosh(v//4)]

N [\/5 sinh(y/¢/4) cosh(M /4)

— M sinh(M/4) cosh(\/ /4)]

~ NiV/@sinh(\V3/4)} / [V/$cosh(v/$/2)]

(117)

for the isoflux-isothermal (g; — T5) case
N} = {th\/acosh(\/EM) — sinh(y/¢/4)

= N3 [\/@cosh(\//4) cosh(M2)

+2M sinh(M/2) sinh(y/$/4)]

— N [V/B cosh(v/$/4) cosh(M /4)

+ M sinh(M/4) sinh(\/$ /4)]

~ NiVbeosh(va/4)} /[ Vb eosh(v/d/2)],
N: :{ — Rig\/$sinh(y/¢/4) — cosh(\/$/4)

— N3 [~ V/Bsinh(v/6/4) cosh(/2)

+2M sinh(M/2) cosh(y/$/4)]

~N; [ — /¢ sinh(y/$/4) cosh(M /4)

+ M sinh(M/4) cosh(+//4)|

+ N v/gsinh(v/@/4)} /| \/deosh(v/$/2)]

(118)

for the isoflux—isothermal (7} — ¢,) case.

The Nusslet numbers for the above wall heating sit-
uations can be written as:

Isothermal-Isothermal (T) — T>) Walls:
Nu; = — 2MN, sinh(M /2) — MN; sinh(M /4)

+ Nyn/psin(y//4) + N5/ cos(/b/4),
Nuy = 2MN, sinh(M /2) + MN; sinh(M /4)

—N4\/$sin(\/$/4) +N5\/$cos(\/$/4).

(119)
Isoflux—Isothermal (q, — Ty) walls:

Nuy = 1 / [Nl + N; cosh(M/2) + N cosh(M /4)
+ Nycos(v/§/4) — Ns sin(\/$/4)} :
Nu;, = 2MN, sinh(M /2) + MN; sinh(M /4)

— Na/sin(y/¢/4) + Ns\/¢p cos(r/d/4).

(120)
Isothermal-Isoflux (T\ — q,) walls:
Nuy = — 2MN, sinh(M /2) — MN; sinh(M /4)
+N4\/q'>sin(\/qvb/4) +N5\/$cos(\/$/4),
Nuy = 1/[N1 + N, cosh(M/2) 4+ N; cosh(M /4)
+ Nycos(\/¢/4) + Ns sin(\/;ﬁ5/4)}
(121)

for the heat generation case and

Isothermal-Isothermal (T) — T») walls:

Nuy = — 2MN; sinh(M /2) — MNj; sinh(M /4)

— N;\/¢sinh(y/d/4) + Ni\/dcosh(\/¢/4),
Nu, = 2MN; sinh(M /2) + MN; sinh(M /4)

+ N;/¢sinh(\/d/4) + N; /¢ cosh(v/$/4).
(122)
Isoflux—Isothermal (q, — Ty) walls:

Nuy = 1 / [N; + N cosh(M/2) + N; cosh(M/4)
+ N cosh(+/@/4) — N sinh(v//4)]
Nu, = 2MN; sinh(M /2) + MN; sinh(M /4)
+ Ni\/psinh(y/$/4) + Niv/¢ cosh(y/$/4).
(123)
Isothermal-Isoflux (T\ — q,) walls:
Nuy = — 2MN; sinh(M /2) — MNj; sinh(M /4)
— Nj\/¢sinh(y//4) + Ni\/d cosh(v/¢/4),
Nuy = 1 / [N; + N; cosh(M/2) + N; cosh(M/4)
+ N cos(/B/4) + N sin(\/$/4)|
(124)
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for the heat absorption case.

It can be shown (at least numerically) that as both M
and ¢ approach zero, the solutions for 6 given in Egs.
(109) and (114) and the Nusselt number solutions given
in Egs. (119) and (122) reduce to

0= —19ZBr114—i—2R111—i—%7 (125)

Nuy; =2(R, + 6Br), Nuy =2(R, — 6Br), (126)

which are the same as reported by Cheng and Wu [§]
and Barletta [5].

Fig. 12 illustrates the influence of the Brinkman
number Br on the temperature profiles for the isother-
mal-isothermal case based on the analytical solutions
given by Eq. (109) for R, = 0.5 and R, = 1.0. It is clearly
seen that the linear temperature distribution associated
with Br =0 is no longer existing for the cases where
Br #0. In addition, the thermal state of the fluid is
augmented owing the presence of both viscous and
magnetic dissipations (Br # 0) for the two different
asymmetic wall heat conditions (R, = 0.5 and R, = 1.0)
shown.

In Fig. 13, the effect of Brinkman number Br on the
temperature distribution in the channel for the case of
isoflux—isothermal wall conditions is reported for two
different values of the thermal ratio parameter Rq. As in
the case of isothermal- isothermal walls shown in
Fig. 12, increasing the value of Br is seen to enhance the
temperature distribution in the channel. However, in
this case, the wall temperature of the left isoflux wall
also increases. It is also seen that higher temperature
distributions are obtained for higher values of Ry;.

Fig. 14 depicts the variations in the Nusselt number
at the left and right walls of the channel as a result of
changing Br for two different wall heating conditions.
For the two shown cases, it is observed that while the
Nusselt numbers at the left wall (Vu;) increase with in-
creasing values of Br, the Nusselt numbers at the right
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n

Fig. 12. Effects of Br on temperature profiles for (7} — 7») case.
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Fig. 14. Effects of Br on Nusselt numbers.

walls (Nu,) show a decreasing trend with Br. It is in-
teresting to note that while Nu, for the isothermal-iso-
thermal case decreases linearly with Br, Nu, for the
isothermal-isoflux case shows a nonlinear decay with Br
approaching a constant value for large values of Br.

6.2. Hydromagnetic mixed convection flow in a channel
with heat generation and viscous and magnetic dissipa-
tions

The general Eq. (8) governing the above titled
problem does not possess an analytical solution.
Therefore, a numerical solution is required. For this
reason, the implicit, tri-diagonal finite-difference method
discussed by Blottner [6] is employed for this purpose.
Eq. (8) is converted into two second-order equations by
a change of variable such that Z = U". The resulting
equations are then discretised using central-difference
quotients. A set of algebraic equations result which can
be solved with iterations to deal with the non-linearities
of the equations by the Thomas algorithm (see [6]). A
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Fig. 15. Effects Br and Gr/Re on velocity profiles for (7} — 7»)
case.
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Fig. 16. Effects of Br and Gr/Re on temperatre profiles for
(71 — T») case.

uniform step size of 0.005 is employed to produce the
numerical results. The accuracy of the numerical solu-
tion is checked against the many analytical solutions
reported previously. Only Figs. 15 and 16 are chosen for
presentation in this section in order to display the effects
of both viscous dissipation and Joule heating on the
velocity and temperature profiles in the channel in the
presence of buoyancy effects. It is clear from these fig-
ures that, for a fixed value of Gr/Re, a larger amount of
flow accompanied with a higher thermal state are in-
duced in the channel owing the presence of both viscous
dissipation and Joule heating. In addition, the presence
of these effects is predicted to be much more pronounced
at larger values of Gr/Re.

7. Conclusion

This work focused on the laminar fully developed
mixed convective flow of an electrically conducting fluid

in a vertical channel in the presence of a magnetic field
and heat generation or absorption effects. Three different
combinations of thermal left-right wall conditions were
prescribed. These thermal left-right wall conditions were
isothermal-isothermal, isoflux—isothermal, and isother-
mal-isoflux conditions. Various analytical solutions for
the velocity and temperature profiles for different special
cases with the three wall heating conditions were ob-
tained. Also, the heat transfer aspects and the reversed
flow conditions were considered and analytical expres-
sions for the Nusselt numbers at the left and right walls
of the channel were derived. In addition, analytical so-
lutions for forced convection flow in a channel with both
viscous and magnetic dissipations were reported. Finally,
the general mixed, convection problem which includes
the effects of both viscous dissipation and Joule heating
was solved numerically by an implicit finite-difference
method. Comparisons with previously published work
were performed and found to be in excellent agreement.
Graphical results were displayed for selected situations
of wall heating conditions and proper conclusions were
obtained. It was found that no reversed flow occurs for
the case of symmetric channel wall temperatures while
reversal flow near the walls is assured for asymmetric
channel wall temperatures and mixed isoflux—isothermal
or isothermal-isoflux wall thermal conditions. The zone
of assured reversal flow was found to increase owing the
presence of either of the magnetic field or the heat gen-
eration effects or both.
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